13.斧頭的形狀叫楔形,在《算數(shù)書》中又稱之為“鄆(y$\stackrel{、}{u}$n)都”或“壍(qi$\stackrel{、}{a}$n)堵”:其上底是一矩形,下底是一線段.有一斧頭:上厚為三,下厚為六,高為五及袤(m$\stackrel{、}{a}$o)為二,問此斧頭的體積為幾何?意思就是說有一斧頭形的幾何體,上底為矩形,下底為一線段,上底的長為3,下底線段長為6,上下底間的距離(高)為5,上底矩形的寬為2,則此幾何體的體積是( 。
A.6B.10C.16D.20

分析 如圖所示,過點A作AM⊥EF,垂足為M,連接MD.過點B作BN⊥EF,垂足為N,連接NC.則ADM-NBC為直三棱柱,E-ADM與F-BCN為全等的三棱錐.即可得出.

解答 解:如圖所示,過點A作AM⊥EF,垂足為M,連接MD.
過點B作BN⊥EF,垂足為N,連接NC.
則ADM-NBC為直三棱柱,E-ADM與F-BCN為全等的三棱錐.
∴此幾何體的體積=$2×\frac{1}{3}$×$\frac{3}{2}$×$\frac{1}{2}×2×5$+$\frac{1}{2}×2×5×3$=20.
故選:D.

點評 本題考查了直三棱柱與三棱錐的體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=log3x,x0∈[1,27],則不等式1≤f(x0)≤2成立的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{3}{13}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)f(x)=k•ax-a-x(a>0且a≠1)是定義域為R的奇函數(shù).
(Ⅰ)求k的值;
(Ⅱ)討論不等式f(x2+x)+f(2x-4)<0的解集;
(Ⅲ)若$f(1)=\frac{8}{3}$,且g(x)=a2x+a-2x-2m•f(x)+2在[1,+∞)恒為正,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某小區(qū)內(nèi)有一條形狀如圖的溝渠,溝沿是兩條平行線段,溝渠寬AB為20厘米,溝渠的直截面ABO為一段拋物線,拋物線頂點為O,對稱軸與地面垂直,溝渠深20厘米,溝渠中水深10厘米.
(1)求水面寬為多少厘米;
(2)若要把這條溝渠改挖(不準(zhǔn)填土)成直截面為等腰梯形的溝渠,是溝渠的底面與地面平行,則改挖后的溝渠底部寬為多少厘米時,所挖土最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z滿足z(1+i)=2i(i為虛數(shù)單位),則z的虛部為( 。
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|y=$\sqrt{2x-{x}^{2}}$},集合B=Z,則A∩B=(  )
A.{1}B.[0,2]C.(0,2)D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=loga(1+x)+loga(3-x)(a>0且a≠1),其中f(1)=2.
(1)求a的值以及f(x)的定義域;
(2)求f(x)在區(qū)間[0,$\frac{3}{2}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點為F,點D(2,y0)在拋物線C上,且|DF|=3,直線y=x-1與拋物線C交于A,B兩點,O為坐標(biāo)原點.
(1)求拋物線C的方程;
(2)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中真命題的個數(shù)是( 。
①“a>b”是“a2>b2”的充要條件;
②“a>b”是“a3>b3”的充要條件;
③“a>b”是“|a|>|b|”的充分條件;
④“a>b”是“ac2≤bc2”的必要條件.
A.3B.2C.1D.0

查看答案和解析>>

同步練習(xí)冊答案