設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,b=
2
asinB

(1)求A的大。     
(2)若b=
6
,c=
3
+1
,求a.
分析:(1)已知等式利用正弦定理化簡,根據(jù)sinB不為0求出sinA的值,即可確定出A的度數(shù);
(2)由b,c,cosA的值,利用余弦定理求出a的值即可.
解答:解:(1)由b=
2
asinB,根據(jù)正弦定理得:sinB=
2
sinAsinB,
∵在△ABC中,sinB≠0,
∴sinA=
2
2
,
∵△ABC為銳角三角形,
∴A=
π
4
;
(2)∵b=
6
,c=
3
+1,cosA=
2
2
,
∴根據(jù)余弦定理得:a2=b2+c2-2bccosA=6+4+2
3
-2×
6
×(
3
+1)×
2
2
=4,
則a=2.
點評:此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a=2bsinA
(Ⅰ)求B的大。
(Ⅱ)求cosA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a=2bsinA
(Ⅰ)求B的大小;
(Ⅱ)若a=3
3
,c=5,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知a=
3
b
sinB
=2

(1)求A的大;
(2)求
a2+b2-c2
ab
+2cosB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)銳角三角形ABC的角A,B,C所對的邊分別為a,b,c,已知a2+b2-c2=ab.
(1)求∠C的度數(shù);  (2)求∠A的取值范圍; (3)求sinA+sinB的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若
m
=(b,  2csinB),  
n
=(cosB
,sinC),且
m
n

(Ⅰ)求B的大小;
(Ⅱ)求sinA+sinC的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案