精英家教網 > 高中數學 > 題目詳情
矩陣的一種運算,該運算的幾何意義為平面上的點(x,y)在矩陣的作用下變換成點(ax+by,cx+dy),若曲線x2+4xy+2y2=1在矩陣的作用下變換成曲線x2-2y2=1,則a+b的值為   
【答案】分析:設(x,y)是曲線x2+4xy+2y2=1的點,在矩陣 的作用下的點為(x′,y′),得出關于a,b的方程組,從而解決問題.
解答:設(x,y)是曲線x2+4xy+2y2=1的點,在矩陣 的作用下的點為(x′,y′),
又x′2-2y′2=1,∴(x+ay)2-2(bx+y)2=1,(1-2b2)x2+(2a-4b)xy+(a2-2)y2=1.
∴a+b=2.
故答案為:2
點評:本小題主要考查幾種特殊的矩陣變換、曲線與方程等基礎知識,考查運算求解能力,解答的關鍵是利用待定系數法求解a,b;屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網某工藝品廠要生產如圖所示的一種工藝品,該工藝品由一個圓柱和一個半球組成,要求半球的半徑和圓柱的底面半徑之比為3:2,工藝品的體積為34πcm3.設圓柱的底面直徑為4x(cm),工藝品的表面積為S(cm2).
(1)試寫出S關于x的函數關系式;
(2)怎樣設計才能使工藝品的表面積最?

查看答案和解析>>

科目:高中數學 來源:2014屆四川省高二上學期期中考試數學試卷(解析版) 題型:填空題

已知次多項式.秦九韶給出的一種算法中,計算的值需要次算法,計算的值共需要9次運算(6次乘法,3次加法),那么計算的值共需要    次運算.

 

查看答案和解析>>

科目:高中數學 來源:2010年高考試題分項版理科數學之專題十三導數 題型:解答題

(本小題滿分13分)

    品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質不同的酒讓其品嘗,要求其按品質優(yōu)劣為它們排序;經過一段時間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質優(yōu)劣為它們排序,這稱為一輪測試。根據一輪測試中的兩次排序的偏離程度的高低為其評為。

    現設,分別以表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令

,

是對兩次排序的偏離程度的一種描述。

    (Ⅰ)寫出的可能值集合;

(Ⅱ)假設等可能地為1,2,3,4的各種排列,求的分布列;

(Ⅲ)某品酒師在相繼進行的三輪測試中,都有

(i)試按(Ⅱ)中的結果,計算出現這種現象的概率(假定各輪測試相互獨立);

(ii)你認為該品酒師的酒味鑒別功能如何?說明理由。

 

查看答案和解析>>

科目:高中數學 來源:2010年高考試題分項版理科數學之專題一集合與簡易邏輯 題型:解答題

(本小題滿分13分)

    品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質不同的酒讓其品嘗,要求其按品質優(yōu)劣為它們排序;經過一段時間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質優(yōu)劣為它們排序,這稱為一輪測試。根據一輪測試中的兩次排序的偏離程度的高低為其評為。

    現設,分別以表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令

,

是對兩次排序的偏離程度的一種描述。

    (Ⅰ)寫出的可能值集合;

(Ⅱ)假設等可能地為1,2,3,4的各種排列,求的分布列;

(Ⅲ)某品酒師在相繼進行的三輪測試中,都有,

(i)試按(Ⅱ)中的結果,計算出現這種現象的概率(假定各輪測試相互獨立);

(ii)你認為該品酒師的酒味鑒別功能如何?說明理由。

 

查看答案和解析>>

科目:高中數學 來源:2010年普通高等學校招生全國統(tǒng)一考試(安徽卷)數學試題(理科) 題型:解答題

(本小題滿分13分)

    品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質不同的酒讓其品嘗,要求其按品質優(yōu)劣為它們排序;經過一段時間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質優(yōu)劣為它們排序,這稱為一輪測試。根據一輪測試中的兩次排序的偏離程度的高低為其評為。

    現設,分別以表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令

,

是對兩次排序的偏離程度的一種描述。

    (Ⅰ)寫出的可能值集合;

(Ⅱ)假設等可能地為1,2,3,4的各種排列,求的分布列;

(Ⅲ)某品酒師在相繼進行的三輪測試中,都有,

(i)試按(Ⅱ)中的結果,計算出現這種現象的概率(假定各輪測試相互獨立);

(ii)你認為該品酒師的酒味鑒別功能如何?說明理由。

 

查看答案和解析>>

同步練習冊答案