【題目】已知拋物線經(jīng)過(guò)點(diǎn),過(guò)A作兩條不同直線,其中直線關(guān)于直線對(duì)稱.
(1)求拋物線E的方程及其準(zhǔn)線方程;
(2)設(shè)直線分別交拋物線E于兩點(diǎn)(均不與A重合),若以線段為直徑的圓與拋物線E的準(zhǔn)線相切,求直線的方程.
【答案】(1)拋物線的方程為,準(zhǔn)線方程為;(2)
【解析】
(1)代值計(jì)算,可得結(jié)果.
(2)假設(shè)直線方程(且在直線左邊),然后拋物線方程結(jié)合韋達(dá)定理,可得,同理得,然后利用準(zhǔn)線與圓的位置關(guān)系得,最后簡(jiǎn)單計(jì)算,可得結(jié)果.
(1)由題可知:
所以拋物線的方程為,準(zhǔn)線方程為
(2)由題可知:
設(shè)直線方程
設(shè)直線方程
且在直線左邊,則
另設(shè)
則
所以
故
同理
所以線段的中點(diǎn)
由線段為直徑的圓與拋物線E的準(zhǔn)線相切,則
所以,
化簡(jiǎn)可得:,所以
由,所以
所以
則直線的斜率為
所以直線方程為
即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的準(zhǔn)線過(guò)橢圓C:(a>b>0)的左焦點(diǎn)F,且點(diǎn)F到直線l:(c為橢圓焦距的一半)的距離為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F做直線與橢圓C交于A,B兩點(diǎn),P是AB的中點(diǎn),線段AB的中垂線交直線l于點(diǎn)Q.若,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為圓上的動(dòng)點(diǎn),點(diǎn)在圓的半徑上運(yùn)動(dòng),點(diǎn)在上,且滿足,其中.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)不過(guò)原點(diǎn)的直線與點(diǎn)的軌跡交于兩點(diǎn),且點(diǎn)關(guān)于恒過(guò)定點(diǎn)的直線對(duì)稱.求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正四棱柱的底面邊長(zhǎng),側(cè)棱長(zhǎng),它的外接球的球心為,點(diǎn) 是的中點(diǎn),點(diǎn)是球上的任意一點(diǎn),有以下命題:
① 的長(zhǎng)的最大值為9;
②三棱錐的體積的最大值是;
③存在過(guò)點(diǎn)的平面,截球的截面面積為;
④三棱錐的體積的最大值為20;
⑤過(guò)點(diǎn)的平面截球所得的截面面積最大時(shí),垂直于該截面.
其中是真命題的序號(hào)是___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,使電路接通,開(kāi)關(guān)不同的開(kāi)閉方式有( )
A. 11種B. 20種
C. 21種D. 12種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了個(gè)網(wǎng)箱,測(cè)量各水箱產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下圖所示.
(1)若用頻率視為概率,記表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于kg”,求事件的概率;
(2)填寫(xiě)以下列聯(lián)表,并根據(jù)此判斷是否有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān)?
箱產(chǎn)量kg | 箱產(chǎn)量kg | 合計(jì) | |
舊養(yǎng)殖方法 | |||
新養(yǎng)殖方法 | |||
合計(jì) |
(3)根據(jù)箱產(chǎn)量頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知i為虛數(shù)單位,下列說(shuō)法中正確的是( )
A.若復(fù)數(shù)z滿足,則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在以為圓心,為半徑的圓上
B.若復(fù)數(shù)z滿足,則復(fù)數(shù)
C.復(fù)數(shù)的模實(shí)質(zhì)上就是復(fù)平面內(nèi)復(fù)數(shù)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,也就是復(fù)數(shù)對(duì)應(yīng)的向量的模
D.復(fù)數(shù)對(duì)應(yīng)的向量為,復(fù)數(shù)對(duì)應(yīng)的向量為,若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①某班級(jí)一共有52名學(xué)生,現(xiàn)將該班學(xué)生隨機(jī)編號(hào),用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本,已知7號(hào)、33號(hào)、46號(hào)同學(xué)在樣本中,那么樣本中另一位同學(xué)的編號(hào)為23;
②一組數(shù)據(jù)1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同;
③一組數(shù)據(jù),0,1,2,3,若該組數(shù)據(jù)的平均值為1,則樣本的標(biāo)準(zhǔn)差為2;
④根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為中,,,,則.
其中真命題為( )
A.①②④B.②④C.②③④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(m為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線與曲線C交于M,N兩點(diǎn).
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)求|MN|.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com