已知函數(shù)f(x)=-x3+ax2-4(),是f(x)的導(dǎo)函數(shù).
(1)當(dāng)a=2時,對任意的的最小值;
(2)若存在使f(x0)>0,求a的取值范圍.
(1)-11(2)

試題分析:
(1)把a=2帶入f(x),對f(x)求導(dǎo)得單調(diào)性,得極值與[-1,1]區(qū)間端點對應(yīng)的函數(shù)值進行比較得到最小值,對f(x)求導(dǎo)得到導(dǎo)函數(shù),導(dǎo)函數(shù)為二次函數(shù)可以對稱軸圖像得到導(dǎo)函數(shù)在區(qū)間[-1,1]上的最小值,函數(shù)f(x)與f(x)的導(dǎo)函數(shù)最小值之和即為的最小值.
(2)該問題為固定區(qū)間上的恒成立問題,只需要函數(shù)f(x)在區(qū)間最小值大于0.關(guān)于函數(shù)f(x)的最值可以通過求導(dǎo)求單調(diào)性來得到在該區(qū)間上的最值,由于導(dǎo)函數(shù)是含參數(shù)的二次函數(shù),故討論需遵循開口,有無根,根的大小等步驟進行分類討論確定原函數(shù)的單調(diào)性,得到最小值,進而得到a的取值范圍.
試題解析:
(1)由題意知
    2分
當(dāng)在[-1,1]上變化時,的變化情況如下表:
x
-1
(-1,0)
0
(0,1)
1

-7
-
0
+
1

-1

-4

-3
的最小值為    4分
的對稱軸為,且拋物線開口向下,
的最小值為    5分
的最小值為-11.    6分
(2).
①若,上單調(diào)遞減,

    9分
②若當(dāng)
從而上單調(diào)遞增,在上單調(diào)遞減,
.    12分
根據(jù)題意,
綜上,的取值范圍是    14分
(或由,用兩種方法可解)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(1)若函數(shù)在其定義域上為增函數(shù),求的取值范圍;
(2)當(dāng)時,函數(shù)在區(qū)間上存在極值,求的最大值.
(參考數(shù)值:自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)若,求函數(shù)上的最小值;
(2)若函數(shù)存在單調(diào)遞增區(qū)間,試求實數(shù)的取值范圍;
(3)求函數(shù)的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若曲線在點處的切線與直線平行,求實數(shù)的值;
(2)若函數(shù)處取得極小值,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)有極值點,且,則關(guān)于x的方程的不同實根個數(shù)是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的導(dǎo)數(shù)是             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)內(nèi)有定義,對于給定的正數(shù),定義函數(shù),取函數(shù),恒有,則(   )
A.的最大值為B.的最小值為C.的最大值為2D.的最小值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是定義在上的兩個可導(dǎo)函數(shù),若,滿足,則滿足
A.B.為常數(shù)函數(shù)
C.D.為常數(shù)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),函數(shù)
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若,寫出函數(shù)的單調(diào)區(qū)間(不必證明);
(3)若存在,使得關(guān)于的方程有三個不相等的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案