設(shè)f(x),g(x)都是單調(diào)函數(shù),有如下四個(gè)命題:
①若f(x)單調(diào)遞增,g(x)單調(diào)遞增,則f(x)-g(x)單調(diào)遞增;
②若f(x)單調(diào)遞增,g(x)單調(diào)遞減,則f(x)-g(x)單調(diào)遞增;
③若f(x)單調(diào)遞增,g(x)單調(diào)遞增,則f(x)-g(x)單調(diào)遞減;
④若f(x)單調(diào)遞減,g(x)單調(diào)遞減,則f(x)-g(x)單調(diào)遞減;
其中,正確的命題是

[     ]
A、①③
B、①④
C、②③
D、②④
練習(xí)冊(cè)系列答案
  • 優(yōu)課堂給力A加系列答案
  • 天府?dāng)?shù)學(xué)系列答案
  • 天府前沿系列答案
  • 文科愛好者系列答案
  • 理科愛好者系列答案
  • 新學(xué)案同步導(dǎo)與練系列答案
  • 名師大課堂系列答案
  • 351高效課堂導(dǎo)學(xué)案系列答案
  • 狀元成才路狀元導(dǎo)練系列答案
  • 快樂小博士鞏固與提高系列答案
  • 年級(jí) 高中課程 年級(jí) 初中課程
    高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
    高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
    高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
    (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
    2
    ,求a的值;
    (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
    (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
    2
    2
    ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)f(x),g(x)是實(shí)數(shù)集R上的奇函數(shù),{x|f(x)>0}={x|4<x<10},{x|g(x)>0}={x|2<x<5},則集合{x|f(x)g(x)>0}=
    (4,5)∪(-5,-4)
    (4,5)∪(-5,-4)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若對(duì)任意x∈[a,b],都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“親密函數(shù)”,區(qū)間[a,b]稱為“親密區(qū)間”.若f(x)=x2-3x+4與g(x)=2x-1在[a,b]上是“親密函數(shù)”,則b-a的最大值是
    1
    1

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1-x)
    (1)求f(x)及g(x)的解析式,并指出其單調(diào)性(無需證明).
    (2)求使f(x)<0的x取值范圍.
    (3)設(shè)h-1(x)是h(x)=log2x的反函數(shù),若存在唯一的x使
    1-h-1(x)1+h-1(x)
    =m-2x
    成立,求m的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

    設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
    (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
    2
    ,求a的值;
    (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
    (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
    2
    2
    ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案