【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑,如圖,網(wǎng)格紙上正方形小格的邊長為,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個表面積最大的長方體,第二次切削沿長方體的對角面刨開,得到兩個三棱柱,第三次切削將兩個三棱柱分別沿棱和表面的對角線刨開得到兩個鱉臑和兩個陽馬,則陽馬與鱉臑的體積之比為( )

A. B. C. D.

【答案】B

【解析】由三視圖可得,直觀圖是底面直徑、高都為4的圓柱,第一次切削該毛坯得到一個表面積最大的長方體,長方體的底面為邊長為的正方體,第二次切削后得到底面是腰長為的等腰直角三角形,高為4的三棱柱,經(jīng)過第三次切削后所得一個陽馬的體積為: ,一個鱉臑的體積為: ,則陽馬與鱉臑的體積之比為,故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[5060),[6070),[70,80),[80,90),[90,100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;

3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如表所示,求數(shù)學成績在[50,90)之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以原點為極點, 軸的正半軸為極軸,建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為 (為參數(shù))

(1)求點的直角坐標;化曲線的參數(shù)方程為普通方程;

(2)設為曲線上一動點,以為對角線的矩形的一邊垂直于極軸,求矩形周長的最小值,及此時點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形與梯形所在的平面互相垂直, , , , , , 的中點, 中點.

1)求證:平面∥平面;

2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內角A,B,C所對的邊分別為a,b,c, =( ,1), =(sinA,cosA), 的夾角為60°. (Ⅰ)求角A的大小;
(Ⅱ)若sin(B﹣C)=2cosBsinC,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(x+ )+cosx,x∈R,
(1)求函數(shù)f(x)的最大值,并寫出當f(x)取得最大值時x的取值集合;
(2)若α∈(0, ),f(α+ )= ,求f(2α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}為等差數(shù)列,且a3=﹣6,a6=0.
(1)求{an}的通項公式.
(2)若等比數(shù)列{bn}滿足b1=8,b2=a1+a2+a3 , 求{bn}的前n項和公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ) 圖象上的任意兩點,且角φ的終邊經(jīng)過點 ,若|f(x1)﹣f(x2)|=4時,|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調遞增區(qū)間;
(3)當 時,不等式mf(x)+2m≥f(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案