設x,y滿足約束條件,則z=x-y的最大值是( )
A.3
B.-3
C.
D.0
【答案】分析:根據(jù)已知的約束條件 畫出滿足約束條件的可行域,再用目標函數(shù)的幾何意義,求出目標函數(shù)的最值,即可求解比值.
解答:解:約束條件 對應的平面區(qū)域如下圖示:
由z=x-y可得y=x-z,則-z表示直線z=x-y在y軸上的截距,截距越小,z越大
可得A(1,1)
當直線z=x-y過A(1,1)時,Z取得最大值0
故選D
點評:本題考查的知識點是線性規(guī)劃,考查畫不等式組表示的可行域,考查數(shù)形結合求目標函數(shù)的最值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•奉賢區(qū)二模)(文)設x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習冊答案