分析 (Ⅰ)由直線的斜率公式整理即可求得曲線E軌跡的方程;
(Ⅱ)由題意可知:設(shè)其直線方程為:x=my-1,代入直線方程,由韋達(dá)定理及向量的數(shù)量積的坐標(biāo)運(yùn)算,則$\overrightarrow{AC}$•$\overrightarrow{AD}$=0,即可求得AC⊥AD;
(Ⅲ)即SACOD=2S△COD,SACOD=2×$\frac{1}{2}$丨OQ丨丨y1-y2丨,由(Ⅱ)即可求得SACOD═2$\sqrt{-\frac{3}{({m}^{2}+3)^{2}}+\frac{4}{{m}^{2}+3}}$,即可求得四邊形ACOD面積的最大值.
解答 解:(Ⅰ)由題意可知:$\frac{y}{x-2}$•$\frac{y}{x+2}$=-$\frac{1}{3}$(x≠2),整理得:$\frac{{x}^{2}}{4}+\frac{3{y}^{2}}{4}=1$(x≠2),
曲線E的方程:$\frac{{x}^{2}}{4}+\frac{3{y}^{2}}{4}=1$(x≠2);
(Ⅱ)當(dāng)直線CD的斜率不為0時(shí),過(guò)點(diǎn)Q(-1,0),設(shè)其直線方程為:x=my-1,C(x1,y1),D(x2,y2),
則$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{3{y}^{2}}{4}=1}\\{x=my-1}\end{array}\right.$,:整理得:(m2+3)y2-2my-3=0,
則y1+y2=$\frac{2m}{{m}^{2}+3}$,y1y2=-$\frac{3}{{m}^{2}+3}$.
$\overrightarrow{AC}$=(x1+2,y1),$\overrightarrow{AD}$=(x2+2,y2),
∴$\overrightarrow{AC}$•$\overrightarrow{AD}$=(x1+2,y1)•(x2+2,y2),
=(m2+1)y1y2+m(y1+y2)+1,
=(m2+1)(-$\frac{3}{{m}^{2}+3}$)+m•$\frac{2m}{{m}^{2}+3}$+1,
=$\frac{-3({m}^{2}+1)+2{m}^{2}+{m}^{2}+3}{{m}^{2}+3}$=0,
∴AC⊥AD.
(Ⅲ)由Q是A,O中點(diǎn),則四邊形ACOD的面積為2倍的三角形COD的面積,即SACOD=2S△COD,
SACOD=2×$\frac{1}{2}$丨OQ丨丨y1-y2丨=$\sqrt{({y}_{1}-{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{(\frac{2m}{{m}^{2}+3})^{2}+\frac{12}{{m}^{2}+3}}$,
=2$\sqrt{\frac{4{m}^{2}+9}{({m}^{2}+3)^{2}}}$,
=2$\sqrt{-\frac{3}{({m}^{2}+3)^{2}}+\frac{4}{{m}^{2}+3}}$,
當(dāng)m=0時(shí),四邊形ACOD面積最大,最大值為2.
點(diǎn)評(píng) 本題考查軌跡方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理及弦長(zhǎng)公式的應(yīng)用,考查向量數(shù)量積的坐標(biāo)運(yùn)算及三角形面積公式的綜合應(yīng)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $6\sqrt{2}$ | B. | $3+3\sqrt{2}$ | C. | $3\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 《雷雨》只能在周二上演 | B. | 《茶館》可能在周二或周四上演 | ||
C. | 周三可能上演《雷雨》或《馬蹄聲碎》 | D. | 四部話劇都有可能在周二上演 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
教育模式 人數(shù)(人) | 在線測(cè)評(píng) | 在線課堂 | 自主學(xué)習(xí) | 線下延伸 |
25 | √ | √ | √ | |
45 | √ | |||
40 | √ | √ | ||
30 | √ | √ | √ | |
40 | √ | √ | ||
20 | √ | √ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{{\sqrt{2016}}}$ | B. | $\frac{1}{{\sqrt{2017}}}$ | C. | $\frac{1}{{\sqrt{2018}}}$ | D. | $\frac{1}{{\sqrt{2019}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com