12.學(xué)校計(jì)劃在周一至周四的藝術(shù)節(jié)上展演《雷雨》、《茶館》、《天籟》和《馬蹄聲碎》四部話劇,每天一部.受多種因素影響,話劇《雷雨》不能在周一和周四上演;《茶館》不能在周一和周三上演;《天籟》不能在周三和周四上演;《馬蹄聲碎》不能在周一和周四上演.那么下列說法正確的是(  )
A.《雷雨》只能在周二上演B.《茶館》可能在周二或周四上演
C.周三可能上演《雷雨》或《馬蹄聲碎》D.四部話劇都有可能在周二上演

分析 由題意,周一上演《天籟》,周四上演《茶館》,周三可能上演《雷雨》或《馬蹄聲碎》,即可得出結(jié)論.

解答 解:由題意,周一上演《天籟》,周四上演《茶館》,周三可能上演《雷雨》或《馬蹄聲碎》,
故選C.

點(diǎn)評(píng) 本小題情境通俗易懂,主要考查邏輯思維和推理能力,難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)不等式$\left\{\begin{array}{l}x≥1\\ x-y≤0\\ x+y≤4\end{array}\right.$表示的平面區(qū)域?yàn)镸,若直線y=kx-2上存在M內(nèi)的點(diǎn),則實(shí)數(shù)k的取值范圍是[2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.計(jì)算:sin(-$\frac{16π}{3}$)=$\frac{\sqrt{3}}{2}$,cos(-$\frac{8π}{3}$)=$-\frac{1}{2}$,tan(-$\frac{17}{4}$π)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=log3(2x-1)的零點(diǎn)是( 。
A.1B.2C.(1,0)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)全集R,A={x|2<x≤6},B={x|3<x<8},C={x|a-1<x<2a}.
(1)求∁R(A∩B);
(2)若B∩C=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$sinx(cosx-\sqrt{3}sinx)$.
(Ⅰ)求$f(\frac{π}{6})$的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[$0,\frac{π}{2}$]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.平面內(nèi)動(dòng)點(diǎn)P(x,y)與兩定點(diǎn)A(-2,0)、B(2,0)連線的斜率之積等于-$\frac{1}{3}$,若點(diǎn)P的軌跡為曲線E,過點(diǎn)Q(-1,0)作斜率不為零的直線CD交曲線E于C、D兩點(diǎn)
(Ⅰ)求曲線E的方程
(Ⅱ)求證:AC⊥AD
(Ⅲ)求四邊形ACOD面積的最大值(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知E,F(xiàn)為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(0<a<b)$的左右焦點(diǎn),拋物線y2=2px(p>0)與雙曲線有公共的焦點(diǎn)F,且與雙曲線交于A、B不同兩點(diǎn),若5|AF|=4|EF|,則雙曲線的離心率為( 。
A.$4+\sqrt{7}$B.$4-\sqrt{3}$C.$4+\sqrt{3}$D.$4-\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某四棱錐的三視圖如圖所示,其俯視圖為等腰直角三角形,則該四棱錐的體積為( 。
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{4}{3}$C.$\sqrt{2}$D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案