【題目】我國(guó)西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬(wàn)元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)f(x)與第x天近似地滿足f(x)=8+ (千人),且參觀民俗文化村的游客人均消費(fèi)g(x)近似地滿足g(x)=143﹣|x﹣22|(元).
(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天純收入的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問(wèn)該村在兩年內(nèi)能否收回全部投資成本?

【答案】
(1)解:依據(jù)題意,有p(x)=f (x)g(x)= (1≤x≤30,x∈N*)

=


(2)1°當(dāng)1≤x≤22,x∈N*時(shí),

p(x)=8x+ +976≥2 +976=1152(當(dāng)且僅當(dāng)x=11時(shí),等號(hào)成立),

因此,p(x)min=p(11)=1152(千元).

2°當(dāng)22<x≤30,x∈N*時(shí),p(x)=

求導(dǎo)可得p′(x)<0,所以p(x)= 在(22,30]上單調(diào)遞減,

于是p(x)min=p(30)=1116(千元).

又1152>1116,所以日最低收入為1116千元.

該村兩年可收回的投資資金為1116×20%×5%×30×12×2=8035.2(千元)=803.52(萬(wàn)元),

因803.52萬(wàn)元>800萬(wàn)元,所以,該村兩年內(nèi)能收回全部投資資金.


【解析】1、由題意可得 p(x)=f (x)g(x)=,得到分段函數(shù)的解析式。
2、若以最低日收入的20%作為每一天純收入的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,選擇合適的解析式第一種情況當(dāng)1≤x≤22,x∈N*時(shí)再根據(jù)基本不等式求得最小值當(dāng)且僅當(dāng)x=11時(shí),等號(hào)成立。第二種情況當(dāng)22<x≤30,x∈N*時(shí),求導(dǎo)得到p′(x)<0根據(jù)單調(diào)性在區(qū)間(22,30]上單調(diào)遞減求得最小值1116千元,又1152>1116,所以日最低收入為1116千元,再由1116×20%×5%×30×12×2=8035.2(千元)=803.52(萬(wàn)元),根據(jù)實(shí)際情況該村兩年內(nèi)能收回全部投資資金。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是圓O:x2+y2=4上的動(dòng)點(diǎn),點(diǎn)A(4,0),若直線y=kx+1上總存在點(diǎn)Q,使點(diǎn)Q恰是線段AP的中點(diǎn),則實(shí)數(shù)k的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x3+x2
(1)求f(x)在R上的解析式;
(2)當(dāng)x∈[m,n](0<m<n)時(shí),若f(x)的值域?yàn)閇3m2+2m﹣1,3n2+2n﹣1],求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 經(jīng)過(guò)點(diǎn) ,離心率為 為坐標(biāo)原點(diǎn).
(I)求橢圓 的方程.
(II)若點(diǎn) 為橢圓 上一動(dòng)點(diǎn),點(diǎn) 與點(diǎn) 的垂直平分線l交 軸于點(diǎn) ,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+c,g(x)=aex的圖象的一個(gè)公共點(diǎn)為P(2,t),且曲線y=f(x),y=g(x)在P點(diǎn)處有相同的切線,若函數(shù)f(x)﹣g(x)的負(fù)零點(diǎn)在區(qū)間(k,k+1)(k∈Z)內(nèi),則k=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若實(shí)數(shù)x,y滿足的約束條件 ,將一顆骰子投擲兩次得到的點(diǎn)數(shù)分別為a,b,則函數(shù)z=2ax+by在點(diǎn)(2,﹣1)處取得最大值的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是 .假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒(méi)有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒(méi)有影響.
(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;
(3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊.問(wèn):乙恰好射擊5次后,被中止射擊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且sinA+ cosA=2.
(Ⅰ)求角A的大;
(Ⅱ)現(xiàn)給出三個(gè)條件:①a=2;②B=45°;③c= b.試從中選出兩個(gè)可以確△ABC的條件,寫出你的選擇,并以此為依據(jù)求△ABC的面積.(只寫出一個(gè)方案即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:根據(jù)兩角和與差的正弦公式,有: sin(α+β)=sinαcosβ+cosαsinβ﹣﹣﹣﹣﹣﹣①
sin(α﹣β)=sinαcosβ﹣cosαsinβ﹣﹣﹣﹣﹣﹣②
由①+②得sin(α+β)+sin(α﹣β)=2sinαcosβ﹣﹣﹣﹣﹣﹣③
令α+β=A,α﹣β=β 有α= ,β= 代入③得 sinA+sinB=2sin cos
(1)利用上述結(jié)論,試求sin15°+sin75°的值;
(2)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA﹣cosB=﹣2sin cos

查看答案和解析>>

同步練習(xí)冊(cè)答案