函數(shù)y=f(x)是定義域?yàn)镽的奇函數(shù),且對任意的x∈R,都有f(x+4)=f(x)成立,當(dāng)x∈(0,2]時(shí),f(x)=-x2+1.
(Ⅰ)當(dāng)x∈[4k-2,4k+2](k∈Z)時(shí),求函數(shù)f(x)的解析式;
(Ⅱ)求不等式f(x)>-1的解集.
分析:(Ⅰ)由奇函數(shù)的性質(zhì)可得f(0)=0,由x∈(0,2]時(shí),f(x)=-x2+1可求當(dāng)x∈[-2,0)時(shí)f(x)=-f(-x)=x2-1,然后再由由f(x+4)=f(x),即y=f(x)是周期為4的函數(shù),可求當(dāng)x∈[4k-2,4k]時(shí)的函數(shù)f(x)=f(x-4k)及x∈(4k,4k+2]時(shí)f(x)=f(x-4k),從而 可求
(Ⅱ)當(dāng)x∈(-2,2]時(shí),由f(x)>-1,得
-2<x<0
x2-1>-1
,或
0<x≤2
-x2+1>-1
,或x=0可求x,然后由函數(shù)y=f(x)的周期為4,可得出f(x)>-1的解集
解答:解:(Ⅰ)當(dāng)x=0時(shí),∵f(0)=-f(0),∴f(0)=0.…(1分)
當(dāng)x∈[-2,0)時(shí),-x∈(0,2),f(x)=-f(-x)=x2-1                                 …(3分)
由f(x+4)=f(x),知y=f(x)又是周期為4的函數(shù),所以當(dāng)x∈[4k-2,4k]時(shí),x-4k∈[-2,0)
∴f(x)=f(x-4k)=(x-4k)2-1,…(5分)
當(dāng)x∈(4k,4k+2]時(shí)x-4k∈(0,2],∴f(x)=f(x-4k)=-(x-4k)2+1    …(7分)
故當(dāng)x∈[4k-2,4k+2](k∈Z)時(shí),函數(shù)f(x)的解析式為
(x-4k)2-1,x∈[4k-2,4k)
0          x=4k,(k∈Z)
-(x-4k)2+1,x∈(4k,4k+2]
      …(9分)
(Ⅱ)當(dāng)x∈(-2,2]時(shí),由f(x>-1),得
-2<x<0
x2-1>-1
,或
0<x≤2
-x2+1>-1
,或x=0.
解之,得-2<x<
2
,…(12分)
∵函數(shù)y=f(x)的周期為4,∴f(x)>-1的解集為{x|4k-2<x<4k+
2
}(k∈Z)…(14分)
點(diǎn)評:本題主要考查了由函數(shù)的奇函數(shù)的性質(zhì)及函數(shù)的周期性求解函數(shù)的解析式,屬于函數(shù)知識(shí)的綜合應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)=ax+
1x+b
(a≠0)
的圖象過點(diǎn)(0,-1)且與直線y=-1有且只有一個(gè)公共點(diǎn);設(shè)點(diǎn)P(x0,y0)是函數(shù)y=f(x)圖象上任意一點(diǎn),過點(diǎn)P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個(gè)中心對稱圖形,并求其對稱中心Q;
(3)證明:線段PM,PN長度的乘積PM•PN為定值;并用點(diǎn)P橫坐標(biāo)x0表示四邊形QMPN的面積..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某旅游點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費(fèi)用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費(fèi)后的所得).
(1)求函數(shù)y=f(x)的解析式及定義域;
(2)試問日凈收入最多時(shí)每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:射線OA為y=kx(k>0,x>0),射線OB為y=-kx(x>0),動(dòng)點(diǎn)P(x,y)在∠AOx的內(nèi)部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.
(1)當(dāng)k為定值時(shí),動(dòng)點(diǎn)P的縱坐標(biāo)y是橫坐標(biāo)x的函數(shù),求這個(gè)函數(shù)y=f(x)的解析式;
(2)根據(jù)k的取值范圍,確定y=f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)y=f(x),有下列命題:
①若a∈[-2,2],則函數(shù)f(x)=
x2+ax+1
的定域?yàn)镽;
②若f(x)=log
1
2
(x2-3x+2)
,則f(x)的單調(diào)增區(qū)間為(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,則
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,則值域是(-∞,0)∪(0,+∞)
④定義在R的函數(shù)f(x),且對任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個(gè)周期.
其中真命題的編號是
 
.(文理相同)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某服裝批發(fā)商場經(jīng)營的某種服裝,進(jìn)貨成本40元/件,對外批發(fā)價(jià)定為60元/件.該商場為了鼓勵(lì)購買者大批量購買,推出優(yōu)惠政策:一次購買不超過50件時(shí),只享受批發(fā)價(jià);一次購買超過50件時(shí),每多購買1件,購買者所購買的所有服裝可在享受批發(fā)價(jià)的基礎(chǔ)上,再降低0.1元/件,但最低價(jià)不低于50元/件.
(Ⅰ)問一次購買150件時(shí),每件商品售價(jià)是多少?
(Ⅱ)問一次購買200件時(shí),每件商品售價(jià)是多少?
(Ⅲ)設(shè)購買者一次購買x件,商場的售價(jià)為y元,試寫出函數(shù)y=f(x)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案