【題目】已知函數(shù)f(x)=(-x2+x-1)ex,其中e是自然對(duì)數(shù)的底數(shù).
(1)求曲線f(x)在點(diǎn)(1,f(1))處的切線;
(2)若方程f(x)=x3+x2+m有3個(gè)不同的根,求實(shí)數(shù)m的取值范圍.
【答案】見(jiàn)解析
【解析】(1)因?yàn)閒(x)=(-x2+x-1)ex,
所以f′(x)=(-2x+1)ex+(-x2+x-1)ex=(-x2-x)ex.
所以曲線f(x)在點(diǎn)(1,f(1))處的切線斜率為
k=f′(1)=-2e.
又f(1)=-e,
所以所求切線方程為y+e=-2e(x-1),即2ex+y-e=0.
(2)因?yàn)閒′(x)=(-2x+1)ex+(-x2+x-1)ex=(-x2-x)ex,
當(dāng)x<-1或x>0時(shí),f′(x)<0;
當(dāng)-1<x<0時(shí),f′(x)>0,
所以f(x)=(-x2+x-1)ex在(-∞,-1)上單調(diào)遞減,在(-1,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,
所以f(x)在x=-1處取得極小值f(-1)=-,在x=0處取得極大值f(0)=-1.
令g(x)=x3+x2+m,得g′(x)=x2+x.
當(dāng)x<-1或x>0時(shí),g′(x)>0;
當(dāng)-1<x<0時(shí),g′(x)<0,
所以g(x)在(-∞,-1)上單調(diào)遞增,在(-1,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.
故g(x)在x=-1處取得極大值g(-1)=+m,在x=0處取得極小值g(0)=m.
因?yàn)榉匠蘤(x)=x3+x2+m有3個(gè)不同的根,
即函數(shù)f(x)與g(x)的圖象有3個(gè)不同的交點(diǎn),
所以,即.
所以--<m<-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,
(1)當(dāng)時(shí),求在區(qū)間上最大值和最小值;
(2)如果方程有三個(gè)不相等的實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中為常數(shù),).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時(shí),是否存在實(shí)數(shù),使得當(dāng)時(shí),不等式恒成立?如果存在,求的取值范圍;如果不存在,請(qǐng)說(shuō)明理由(其中是自然對(duì)數(shù)的底數(shù),).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】鹽化某廠決定采用以下方式對(duì)某塊鹽池進(jìn)行開(kāi)采:每天開(kāi)采的量比上一天減少,10天后總量變?yōu)樵瓉?lái)的一半,為了維持生態(tài)平衡,剩余總量至少要保留原來(lái)的,已知到今天為止,剩余的總量是原來(lái)的.
(1)求的值;
(2)到今天為止,工廠已經(jīng)開(kāi)采了幾天?
(3)今后最多還能再開(kāi)采多少天?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).現(xiàn)提供的大致圖像的8個(gè)選項(xiàng):
(A)(B)(C)(D)
(E)(F)(G)(H)
(Ⅰ)請(qǐng)你作出選擇,你選的是( );
(Ⅱ)對(duì)于函數(shù)圖像的判斷,往往只需了解函數(shù)的基本性質(zhì).為了驗(yàn)證你的選擇的正確性,請(qǐng)你解決下列問(wèn)題:
①的定義域是 ;
②就奇偶性而言, 是 ;
③當(dāng)時(shí), 的符號(hào)為正還是負(fù)?并證明你的結(jié)論.
(解決了上述三個(gè)問(wèn)題,你要調(diào)整你的選項(xiàng),還來(lái)得及.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】做投擲2個(gè)骰子試驗(yàn),用(x,y)表示點(diǎn)P的坐標(biāo),其中x表示第1個(gè)骰子出現(xiàn)的點(diǎn)數(shù),y表示第2個(gè)骰子出現(xiàn)的點(diǎn)數(shù).
(1)求點(diǎn)P在直線y=x上的概率.
(2)求點(diǎn)P不在直線y=x+1上的概率.
(3)求點(diǎn)P的坐標(biāo)(x,y)滿足16<x2+y2≤25的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)在一次對(duì)收看文藝節(jié)目和新聞節(jié)目的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如表所示:
類別 | 文藝節(jié)目 | 新聞節(jié)目 | 總計(jì) |
20至40歲 | 40 | 18 | 58 |
大于40歲 | 15 | 27 | 42 |
總計(jì) | 55 | 45 | 100 |
(1)由表中數(shù)據(jù)直觀分析,收看新聞節(jié)目的觀眾是否與年齡有關(guān)?
(2)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機(jī)抽取5名,則大于40歲的觀眾應(yīng)該抽取幾名?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com