如圖,正方形所在平面與圓所在的平面相交于,線段為圓的弦,垂直于圓所在的平面,垂足為圓上異于、的點,設正方形的邊長為,且.
(1)求證:平面平面;
(2)若異面直線與所成的角為,與底面所成角為,二面角所成角為,求證
(1)詳見解析;(2)詳見解析.
解析試題分析:(1)證明平面平面,即證明平面,轉化為證明直線與平面內的兩條相交直線垂直;(2)立體幾何中求空間角的方法有兩種,一是常規(guī)法,找出(或作出)適合題意的角;證明找出的角符合對應角的要求;求出相關角的大小(或三角函數值).二是用向量法,即先確定兩個向量(直線的方向向量或平面的法向量)求兩個向量夾角的余弦值,注意確定所求的夾角與向量夾角的關系,最后得出所求的角或角的三角函數值.
試題解析:(1)圓所在的平面,在圓所在的平面上,,
又在正方形中,,,平面,
又平面,平面平面.
(2)平面,平面,,即為圓的直徑,
又,且,,
以點為坐標原點,分別以為軸、軸,以垂直于底面的直線為軸,建立空間直角坐標系,則,,,
,,,,
又,,,
由此得,
設平面的一個法向量,則,即,
取,則,又平面的一個法向量為,
,,
于是,即.
考點:空間幾何體的線線、線面關系,線面、面面角的求法.
科目:高中數學 來源: 題型:解答題
四棱錐P-ABCD中,側面PAD⊥底面ABCD,底面ABCD是邊長為2的正方形,又PA=PD,∠APD=60°,E、G分別是BC、PE的中點.
(1)求證:AD⊥PE;
(2)求二面角E-AD-G的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知:如圖,等腰直角三角形的直角邊,沿其中位線將平面折起,使平面⊥平面,得到四棱錐,設、、、的中點分別為、、、.
(1)求證:、、、四點共面;
(2)求證:平面平面;
(3)求異面直線與所成的角.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,在四棱錐中,底面四邊形是菱形,,是邊長為2的等邊三角形,,.
(Ⅰ)求證:底面;
(Ⅱ)求直線與平面所成角的大。
(Ⅲ)在線段上是否存在一點,使得∥平面?如果存在,求的值,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且,點C為圓O上一點,且.點P在圓O所在平面上的正投影為點D,PD=DB.
(1)求證:平面;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P—ABCD中,ABCD為平行四邊形,且BC⊥平面PAB,PA⊥AB,M為PB的中點,PA=AD=2.
(Ⅰ)求證:PD//平面AMC;
(Ⅱ)若AB=1,求二面角B—AC—M的余弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知四棱錐P-ABCD的底面為菱形,且∠ABC =60°,AB=PC=2,AP=BP=.
(Ⅰ)求證:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com