5、已知向量a=(1,1),b=(2,x),若a+b與4b-2a平行,則實數(shù)x的值是( 。
分析:寫出要用的兩個向量的坐標,由a+b與4b-2a平行,根據(jù)向量共線的坐標形式的充要條件可得關(guān)于X的方程,解方程可得結(jié)果.
解答:解:∵a=(1,1),b=(2,x),
∴a+b=(3,x+1),4b-2a=(6,4x-2),
由于a+b與4b-2a平行,
得6(x+1)-3(4x-2)=0,
解得x=2.
故選D
點評:本題也可以這樣解:因為a+b與4b-2a平行,則存在常數(shù)λ,使a+b=λ(4b-2a),即(2λ+1)a=(4λ-1)b,根據(jù)向量共線的條件知,向量a與b共線,故x=2.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,-1),
b
=(3,4),則|
a
+
b
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,1),
b
=(2,n),若
a
b
,則n等于( 。
A、-3B、-2C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,3),
b
=(-2,1),
c
=(3,2).若向量
c
與向量
a
+k
b
共線,則實數(shù)k=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源:設(shè)計選修數(shù)學2-1蘇教版 蘇教版 題型:013

已知向量a=(1,1,0),b=(-1,0,2)且kab與2ab互相垂直,則k的值是

[  ]
A.

1

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)已知向量a=(1,1),b=(1,0),c滿足a·c=0且|a|=|c|,b·c>0.

(1)求向量c;(2)若映射f:(x,y)→(x1,y1)=xa+yc,求映射f下(1,2)的原象.

查看答案和解析>>

同步練習冊答案