已知函數(shù).
(1)求的最小正周期和單調(diào)增區(qū)間;
(2)設,若的大小.

(1)最小正周期為,
(2)

解析試題分析:(Ⅰ)由的最小正周期為        2分
所以函數(shù)的單調(diào)增區(qū)間為     6分
(Ⅱ)由,
整理得: ,因為,所以可得,解得,     10分
,所以,   .12分
考點:三角函數(shù)的性質(zhì)
點評:主要是考查了三角函數(shù)的性質(zhì)的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知電流I與時間t的關系式為。

(1)上圖是(ω>0,)在一個周期內(nèi)的圖象,根據(jù)圖中數(shù)據(jù)求的解析式;
(2)記的單調(diào)遞增區(qū)間

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當函數(shù)取得最大值時,求自變量的取值集合;
(2)求該函數(shù)的單調(diào)遞增區(qū)間。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)的最大值為3,其圖像相鄰兩條對稱軸之間的距離為
(1)求函數(shù)的解析式
(2)設,則,求的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,求下列各式的值:
(1) ;    (2) .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,,且
的值;
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,.
(Ⅰ)求的取值范圍;
(Ⅱ)若為銳角,求的最大值并求出此時角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
求函數(shù)的最小正周期和值域;
是第二象限角,且,試求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù) ()的部分圖像如右所示.

(1)求函數(shù)的解析式;
(2)設,且,求的值.

查看答案和解析>>

同步練習冊答案