某批產(chǎn)品成箱包裝,每箱5件,一用戶(hù)在購(gòu)進(jìn)該批產(chǎn)品前先取出3箱,再?gòu)拿肯渲腥我獬鋈?件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望;
(2)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶(hù)就拒絕購(gòu)買(mǎi)這批產(chǎn)品,求這批產(chǎn)品被用戶(hù)拒絕的概率.
【答案】分析:(1)由取出的第一、二、三箱中分別有0件、1件、2件二等品可知變量ξ的取值,結(jié)合變量對(duì)應(yīng)的事件做出這四個(gè)事件發(fā)生的概率,寫(xiě)出分布列和期望.
(2)由上一問(wèn)做出的分布列可以知道,P(ξ=2)=,P(ξ=3)=,這兩個(gè)事件是互斥的,根據(jù)互斥事件的概率公式得到結(jié)果.
解答:解(1)由題意知抽檢的6件產(chǎn)品中二等品的件數(shù)ξ=0,1,2,3

∴ξ的分布列為

∴ξ的數(shù)學(xué)期望E(ξ)=
(2)∵P(ξ=2)=,P(ξ=3)=,這兩個(gè)事件是互斥的
∴P(ξ≥2)=
點(diǎn)評(píng):本題主要考查分布列的求法以及利用分布列求期望和概率,求離散型隨機(jī)變量的分布列和期望是近年來(lái)理科高考必出的一個(gè)問(wèn)題,題目做起來(lái)不難,運(yùn)算量也不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某批產(chǎn)品成箱包裝,每箱5件,一用戶(hù)在購(gòu)進(jìn)該批產(chǎn)品前先取出3箱,再?gòu)拿肯渲腥我獬鋈?件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望;
(2)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶(hù)就拒絕購(gòu)買(mǎi)這批產(chǎn)品,求這批產(chǎn)品被用戶(hù)拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某批產(chǎn)品成箱包裝,每箱5件.一用戶(hù)在購(gòu)進(jìn)該批產(chǎn)品前先取出3箱,再?gòu)拿肯渲腥我獬槿?件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù).
(Ⅰ)求在抽檢的6件產(chǎn)品中恰有一件二等品的概率;
(Ⅱ)求ξ的分布列和數(shù)學(xué)期望值;
(Ⅲ)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶(hù)就拒絕購(gòu)買(mǎi)這批產(chǎn)品,求這批產(chǎn)品被用戶(hù)拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某批產(chǎn)品成箱包裝,每箱5件,一用戶(hù)在購(gòu)進(jìn)該批產(chǎn)品前先取出3箱,再?gòu)拿肯渲腥我獬鋈?件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(I)求取6件產(chǎn)品中有1件產(chǎn)品是二等品的概率.
(II)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶(hù)就拒絕購(gòu)買(mǎi)這批產(chǎn)品,求這批產(chǎn)品被用戶(hù)拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州模擬)某批產(chǎn)品成箱包裝,每箱5件,一用戶(hù)在購(gòu)進(jìn)該批產(chǎn)品前先隨機(jī)取出3箱,再?gòu)拿肯渲腥我獬槿?件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶(hù)就拒絕購(gòu)買(mǎi)這批產(chǎn)品,求這批產(chǎn)品被用戶(hù)拒絕的概率;
(II)用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•揭陽(yáng)二模)某批產(chǎn)品成箱包裝,每箱5件.一用戶(hù)在購(gòu)進(jìn)該批產(chǎn)品前先取出3箱,設(shè)取出的3箱中,第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)在取出的3箱中,若該用戶(hù)從第三箱中有放回的抽取3次(每次一件),求恰有兩次抽到二等品的概率;
(2)在取出的3箱中,若該用戶(hù)再?gòu)拿肯渲腥我獬槿?件產(chǎn)品進(jìn)行檢驗(yàn),用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案