精英家教網 > 高中數學 > 題目詳情
(2013•揭陽二模)某批產品成箱包裝,每箱5件.一用戶在購進該批產品前先取出3箱,設取出的3箱中,第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)在取出的3箱中,若該用戶從第三箱中有放回的抽取3次(每次一件),求恰有兩次抽到二等品的概率;
(2)在取出的3箱中,若該用戶再從每箱中任意抽取2件產品進行檢驗,用ξ表示抽檢的6件產品中二等品的件數,求ξ的分布列及數學期望.
分析:(1)設隨機變量ξ表示“3次抽取抽到次品的件數”,則ξ~B(3,
2
5
)
,利用二項分布即可得出;
(2)利用超幾何分布即可得到概率.進而得到分布列和數學期望.
解答:解:(1)設A表示事件“從第三箱中有放回地抽取3次(每次一件),恰有兩次取到二等品”,
依題意知,每次抽到二等品的概率為
2
5
,
P(A)=
C
2
3
(
2
5
)2×
3
5
=
36
125

(2)ξ可能的取值為0,1,2,3.
P(ξ=0)=
C
2
4
C
2
3
C
2
5
C
2
5
=
18
100
=
9
50
,P(ξ=1)=
C
1
4
C
2
3
C
2
5
C
2
5
+
C
2
4
C
1
3
C
1
2
C
2
5
C
2
5
=
12
25

P(ξ=2)=
C
1
4
C
1
3
C
1
2
C
2
5
C
2
5
+
C
2
4
C
2
2
C
2
5
C
2
5
=
15
50
=
3
10
,P(ξ=3)=
C
1
4
C
2
2
C
2
5
C
2
5
=
1
25

ξ的分布列為
ξ 0 1 2 3
P
9
50
12
25
15
50
1
25
數學期望為Eξ=1×
12
25
+2×
15
50
+3×
1
25
=1.2.
點評:熟練掌握二項分布、超幾何分布及分布列和數學期望是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•揭陽二模)在等差數列{an}中,首項a1=0,公差d≠0,若am=a1+a2+…+a9,則m的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•揭陽二模)如圖所示,C,D是半圓周上的兩個三等分點,直徑AB=4,CE⊥AB,垂足為E,BD與CE相交于點F,則BF的長為
2
3
3
2
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•揭陽二模)一個棱長為2的正方體沿其棱的中點截去部分后所得幾何體的三視圖如圖示,則該幾何體的體積為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•揭陽二模)在圖(1)所示的長方形ABCD中,AD=2AB=2,E、F分別為AD、BC的中點,M、N兩點分別在AF和CE上運動,且AM=EN=a(0<a<
2
)
.把長方形ABCD沿EF折成大小為θ的二面角A-EF-C,如圖(2)所示,其中θ∈(0,
π
2
]

(1)當θ=45°時,求三棱柱BCF-ADE的體積;
(2)求證:不論θ怎么變化,直線MN總與平面BCF平行;
(3)當θ=900a=
2
2
.時,求異面直線MN與AC所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•揭陽二模)已知函數f(x)=
1
x-ln(x+1)
,則y=f(x)的圖象大致為( 。

查看答案和解析>>

同步練習冊答案