已知sin(
π
4
+x)=
3
5
,sin(
π
4
-x)=-
4
5
,則tan(
π
4
-x)tan(
π
4
+x)=
 
考點:兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:利用tan(
π
4
+x)=cot(
π
4
-x)以及同角三角函數(shù)的基本關系求得tan(
π
4
-x)tan(
π
4
+x)的值.
解答: 解:∵(
π
4
+x)+(
π
4
-x)=
π
2
,∴tan(
π
4
+x)=cot(
π
4
-x),
∴tan(
π
4
-x)tan(
π
4
+x)=tan(
π
4
-x)cot(
π
4
-x)=1,
故答案為:1.
點評:本題主要考查誘導公式、同角三角函數(shù)的基本關系的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}通項式為an=(
1
2
n,設bn=nan,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(
3
cosωx,sinωx),
b
=(sinωx,0),其中ω>0,記函數(shù)f(x)=(
a
+
b
)•
b
-
1
2

(1)若f(x)的圖象中兩條相鄰對稱軸間的距離
π
2
,求ω的值;
(2)在(1)的條件下,若x∈[-
π
6
π
6
],求f(x)最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三棱柱ABC-A1B1C1中,各棱長均相等,BC1與B1C的交點為D,則AD與平面BB1C1C所成角的大小是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

類比平面幾何中“三角形任兩邊之和大于第三邊”,得空間相應的結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系(ρ,θ)(0≤θ≤2π)中,曲線ρ(cosθ+sinθ)=1與ρ(cosθ-sinθ)=1的交點的極坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)滿足f(2x+1)=4x2-6x+5,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+mx2-3m2x+1,m∈R.若f(x)在區(qū)間(-2,3)上是減函數(shù),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2+x+1,f(2x)=
 

查看答案和解析>>

同步練習冊答案