【題目】若直線與曲線滿足以下兩個(gè)條件:點(diǎn)在曲線上,直線方程為;曲線在點(diǎn)附近位于直線的兩側(cè),則稱直線在點(diǎn)處“切過”曲線.下列選項(xiàng)正確的是( )
A.直線在點(diǎn)處“切過”曲線
B.直線在點(diǎn)處“切過”曲線
C.直線在點(diǎn)處“切過”曲線
D.直線在點(diǎn)處“切過”曲線
【答案】AC
【解析】
對(duì)四個(gè)選項(xiàng)逐一判斷直線是否是曲線在點(diǎn)的切線方程,然后結(jié)合圖像判斷直線是否滿足“切過”,由此確定正確選項(xiàng).
對(duì)于A選項(xiàng),曲線,,,所以曲線在點(diǎn)的切線方程為,圖像如下圖所示,由圖可知直線在點(diǎn)處“切過”曲線,故A選項(xiàng)正確.
對(duì)于B選項(xiàng),曲線,,,所以曲線在點(diǎn)的切線方程為,故B選項(xiàng)錯(cuò)誤.
對(duì)于C選項(xiàng),曲線,,,所以曲線在點(diǎn)的切線方程為,圖像如下圖所示,由圖可知直線在點(diǎn)處“切過”曲線,故C選項(xiàng)正確.
對(duì)于D選項(xiàng),曲線,,,所以曲線在點(diǎn)的切線方程為,圖像如下圖所示,由圖可知直線在點(diǎn)處沒有“切過”曲線,故D選項(xiàng)錯(cuò)誤.
故選:AC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位編著,它對(duì)我國民間普及珠算和數(shù)學(xué)知識(shí)起到了很大的作用,是東方古代數(shù)學(xué)的名著.在這部著作中,許多數(shù)學(xué)問題都是以歌訣形式呈現(xiàn)的,“九兒問甲歌”就是其中一首:一個(gè)公公九個(gè)兒,若問生年總不知,自長排來差三歲,共年二百又零七,借問長兒多少歲,各兒歲數(shù)要詳推.在這個(gè)問題中,這位公公年齡最小的兒子的年齡為( )
A.8B.9C.11D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若在處的切線與直線平行,求的值及的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求證:在定義域內(nèi)有且只有兩個(gè)極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,點(diǎn)為左焦點(diǎn),過點(diǎn)作軸的垂線交橢圓于、兩點(diǎn),且.
(1)求橢圓的方程;
(2)在圓上是否存在一點(diǎn),使得在點(diǎn)處的切線與橢圓相交于、兩點(diǎn)滿足?若存在,求的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中實(shí)數(shù)a為常數(shù).
(I)當(dāng)a=-l時(shí),確定的單調(diào)區(qū)間:
(II)若f(x)在區(qū)間(e為自然對(duì)數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=-1時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為,,為其右焦點(diǎn),,且該橢圓的離心率為;
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)作斜率為的直線交橢圓于軸上方的點(diǎn),交直線于點(diǎn),直線與橢圓的另一個(gè)交點(diǎn)為,直線與直線交于點(diǎn).若,求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)的分布列為
商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300元.表示經(jīng)銷一件該商品的利潤.
(Ⅰ)求事件A:“購買該商品的3位顧客中,至少有1位采用1期付款”的概率
P(A);
(Ⅱ)求的分布列及期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為數(shù)列的前項(xiàng)和,,,平面內(nèi)三個(gè)不共線的向量,,滿足,若點(diǎn),,在同一直線上,則______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com