(本小題滿分13分)
已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2-(+1)an(n≥1).
(1)求證:數(shù)列{}是等比數(shù)列;
(2)設(shè)數(shù)列{2nan}的前n項(xiàng)和為Tn,An=.試比較An與的大小。
解:(1)由a1=S1=2-3a1得a1=, 1分
由Sn=2-(+1)an得Sn-1=2-(+1)an-1,
于是an=Sn- Sn-1=(+1)an-1-(+1)an,
整理得=×(n≥2), 4分
所以數(shù)列{}是首項(xiàng)及公比均為的等比數(shù)列. 5分
(2)由(Ⅰ)得=×=. 6分
于是2nan=n,Tn=1+2+3+…+n=, 7分
,
An=2[(1-)+(-)+…+=2(1-)=.
9分
又=,問(wèn)題轉(zhuǎn)化為比較與的大小,即與的大小.
設(shè)f(n)= ,g(n)=.
∵f(n+1)-f(n)=,當(dāng)n≥3時(shí), f(n+1)-f(n)>0,
∴當(dāng)n≥3時(shí)f(n)單調(diào)遞增, 11分
∴當(dāng)n≥4時(shí),f(n) ≥f(4)=1,而g(n)<1, ∴當(dāng)n≥4時(shí)f(n) >g(n),
經(jīng)檢驗(yàn)n=1,2,3時(shí),仍有f(n) ≥g(n),
因此,對(duì)任意正整數(shù)n,都有f(n) >g(n),
即An <. 13分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來(lái)源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com