設(shè)遞增等比數(shù)列{an}的前n項和為Sn,且a2=3,S3=13,數(shù)列{bn}滿足b1=a1,點P(bn,bn+1)在直線x-y+2=0上,n∈N*

(Ⅰ)求數(shù)列{an},{bn}的通項公式;

(Ⅱ)設(shè)cn,數(shù)列{cn}的前n項和Tn,若Tn>2a-1恒成立(n∈N*),求實數(shù)a的取值范圍.

答案:
解析:

  解:(Ⅰ)由可得

  因為數(shù)列為遞增等比數(shù)列,所以

  故是首項為,公比為的等比數(shù)列.所以  3分

  由點在直線上,所以

  則數(shù)列是首項為1,公差為2的等差數(shù)列.則  5分

  (Ⅱ)因為,所以

  則  7分

  兩式相減得:

    8分

  所以  9分

  

  .若恒成立,則,  12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公比為q的等比數(shù)列,給出下列命題
①數(shù)列{an}的前n項和Sn=
a1-an+11-q
;
②若q>1,則數(shù)列{an}是遞增數(shù)列;
③若a1<a2<a3,則數(shù)列{an}是遞增數(shù)列;
④若等比數(shù)列{an}前n項和Sn=3n+a,則a=-1.
其中正確的是
③④
③④
 (請將你認(rèn)為正確的命題的序號都寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)單調(diào)遞增等比數(shù)列{an}滿足a1+a2+a3=7,且a3是a1,a2+5的等差中項,
(1)求數(shù)列{an}的通項;
(2)數(shù)列{cn}滿足:對任意正整數(shù)n,
c1
a1
+
c2
a2
+…+
cn
an
=22+
2n-11
2n-1
均成立,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省寧波市慈溪中學(xué)高三(上)期中數(shù)學(xué)試卷(4、5班)(解析版) 題型:解答題

設(shè)單調(diào)遞增等比數(shù)列{an}滿足a1+a2+a3=7,且a3是a1,a2+5的等差中項,
(1)求數(shù)列{an}的通項;
(2)數(shù)列{cn}滿足:對任意正整數(shù)n,++…+=22+均成立,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省高考數(shù)學(xué)最新押題卷(文科)(解析版) 題型:解答題

設(shè)單調(diào)遞增等比數(shù)列{an}滿足a1+a2+a3=7,且a3是a1,a2+5的等差中項,
(1)求數(shù)列{an}的通項;
(2)數(shù)列{cn}滿足:對任意正整數(shù)n,++…+=22+均成立,求數(shù)列{cn}的前n項和.

查看答案和解析>>

同步練習(xí)冊答案