2.如圖,正方形O′A′B′C′的邊長為2cm,它是水平放置的一個平面圖形的直觀圖,則原平面圖形的周長是( 。ヽm.
A.12B.16C.$4(1+\sqrt{3})$D.$4(1+\sqrt{2})$

分析 根據(jù)題目給出的直觀圖的形狀,畫出對應(yīng)的原平面圖形的形狀,求出相應(yīng)的邊長,則問題可求.

解答 解:由直觀圖可得原圖如圖所示,且OA=2,$OB=2O'B'=4\sqrt{2}$,
所以AB=6,所以周長為16,
故選:B.

點評 本題考查了平面圖形的直觀圖,考查了數(shù)形結(jié)合思想,解答此題的關(guān)鍵是掌握平面圖形的直觀圖的畫法,能正確的畫出直觀圖的原圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.對于二次函數(shù)y=-4x2+8x-5,
(1)指出圖象的開口方向、對稱軸方程、頂點坐標;
(2)畫出它的圖象,并說明其圖象由y=-4x2的圖象經(jīng)過怎樣平移得來;
(3)分析函數(shù)的單調(diào)性.
(4)求函數(shù)的最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正六棱柱的12個頂點都在一個半徑為3的球面上,當正六棱柱的體積最大時,其高的值為(  )
A.3$\sqrt{3}$B.$\sqrt{3}$C.2$\sqrt{6}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)是定義在(0,+∞)上的單調(diào)函數(shù),?x∈(0,+∞),f[f(x)-lnx]=e+1,函數(shù)h(x)=xf(x)-ex的最小值為( 。
A.-1B.$-\frac{1}{e}$C.0D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在直角三角形ABC中,∠B=90°,$AB=\frac{1}{2}AC=1$,點M,N分別在邊AB和AC上(M點和B點不重合),將△AMN沿MN翻折,△AMN變?yōu)椤鰽'MN,使頂點A'落在邊BC上(A'點和B點不重合).設(shè)∠ANM=θ
(1)用θ表示線段AM的長度,并寫出θ的取值范圍;
(2)求線段A'N長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.近年來我國電子商務(wù)行業(yè)發(fā)展迅速,相關(guān)管理部門推出了針對電商的商品質(zhì)量和服務(wù)評價的評價體系,現(xiàn)從評價系統(tǒng)中選出某商家的200次成功交易,發(fā)現(xiàn)對商品質(zhì)量的好評率為0.6,對服務(wù)評價的好評率為0.75,其中對商品質(zhì)量和服務(wù)評價都做出好評的交易80次.
(1)是否可以在犯錯誤概率不超過0.5%的前提下,認為商品質(zhì)量與服務(wù)好評有關(guān)?
(2)若將頻率視為概率,某人在該購物平臺上進行的5次購物中,設(shè)對商品質(zhì)量和服務(wù)評價全好評的次數(shù)為隨機變量X,求X的分布列(可用組合數(shù)公式表示)和數(shù)學(xué)期望.
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知拋物線y2=2px(p>0),過點K(-4,0)作拋物線的兩條切線KA,KB,A,B為切點,若AB過拋物線的焦點,△KAB的面積為24,則p的值是( 。
A.12B.-12C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=sinx-cosx的圖象(  )
A.關(guān)于直線$x=\frac{π}{4}$對稱B.關(guān)于直線$x=-\frac{π}{4}$對稱
C.關(guān)于直線$x=\frac{π}{2}$對稱D.關(guān)于直線$x=-\frac{π}{2}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若f(x)=xsinx,則函數(shù)f(x)的導(dǎo)函數(shù)f′(x)等于( 。
A.1-sinxB.x-sinxC.sinx+xcosxD.cosx-xsinx

查看答案和解析>>

同步練習(xí)冊答案