【題目】設(shè)定義域?yàn)镽的函數(shù) ,若關(guān)于x的方程f2(x)+bf(x)+c=0有三個(gè)不同的解x1 , x2 , x3 , 則 的值是(
A.1
B.3
C.5
D.10

【答案】C
【解析】解:令f(x)=t,做出f(x)的函數(shù)圖象如下:

由圖象可知當(dāng)t=1時(shí),f(x)=t有三解,
當(dāng)0<t<1或t>1時(shí),f(x)=t有兩解,
當(dāng)t≤0時(shí),方程f(x)=t無(wú)解.
∵關(guān)于x的方程f2(x)+bf(x)+c=0有三個(gè)不同的解x1 , x2 , x3 ,
∴f(x)=1,
當(dāng)x<1時(shí),令 =1解得x=0,
當(dāng)x>1時(shí),令 解得x=2,
當(dāng)x=1時(shí),顯然x=1是f(x)=1的解.
不妨設(shè)x1<x2<x3 , 則x1=0,x2=1,x3=2,
=5.
故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時(shí),函數(shù)解析式f(x)= (a∈R).
(1)寫(xiě)出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若有唯一解,求實(shí)數(shù)的值;

(Ⅱ)證明:當(dāng)時(shí),

(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)科研人員屠呦呦法相從青篙中提取物青篙素抗瘧性超強(qiáng),幾乎達(dá)到100%,據(jù)監(jiān)測(cè):服藥后每毫升血液中的含藥量y(微克)與時(shí)間r(小時(shí))之間近似滿(mǎn)足如圖所示的曲線

(1)寫(xiě)出第一服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)據(jù)進(jìn)一步測(cè)定:每毫升血液中含藥量不少于 微克時(shí),治療有效,求服藥一次后治療有效的時(shí)間是多長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩名同學(xué)參加定點(diǎn)投籃測(cè)試,已知兩人投中的概率分別是,假設(shè)兩人投籃結(jié)果相互沒(méi)有影響,每人各次投球是否投中也沒(méi)有影響.

(Ⅰ)若每人投球3次(必須投完),投中2次或2次以上,記為達(dá)標(biāo),求甲達(dá)標(biāo)的概率;

(Ⅱ)若每人有4次投球機(jī)會(huì),如果連續(xù)兩次投中,則記為達(dá)標(biāo).達(dá)標(biāo)或能斷定不達(dá)標(biāo),則終止投籃.記乙本次測(cè)試投球的次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二八班選出甲、乙、丙三名同學(xué)參加級(jí)部組織的科學(xué)知識(shí)競(jìng)賽.在該次競(jìng)賽中只設(shè)成績(jī)優(yōu)秀和成績(jī)良好兩個(gè)等次,若某同學(xué)成績(jī)優(yōu)秀,則給予班級(jí)10分的班級(jí)積分,若成績(jī)良好,則給予班級(jí)5分的班級(jí)積分.假設(shè)甲、乙、丙成績(jī)?yōu)閮?yōu)秀的概率分別為 , ,他們的競(jìng)賽成績(jī)相互獨(dú)立.
(1)求在該次競(jìng)賽中甲、乙、丙三名同學(xué)中至少有一名成績(jī)?yōu)閮?yōu)秀的概率;
(2)記在該次競(jìng)賽中甲、乙、丙三名同學(xué)所得的班級(jí)積分之和為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R的函數(shù)f(x)= 是奇函數(shù),其中a,b為實(shí)數(shù)
(1)求a,b的值
(2)用定義證明f(x)在R上是減函數(shù)
(3)若對(duì)于任意的t∈[﹣3,3],不等式f(t2﹣2t)+f(﹣2t2+k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最大值為2.

(Ⅰ)求函數(shù)上的單調(diào)遞減區(qū)間;

(Ⅱ)中,角,所對(duì)的邊分別是,,且,,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)觀測(cè)生產(chǎn)某種零件的某工廠25名工人的日加工零件數(shù)(單位:件),獲得數(shù)據(jù)如下:
30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.
根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組

頻數(shù)

頻率

[25,30]

3

0.12

(30,35]

5

0.20

(35,40]

8

0.32

(40,45]

n1

f1

(45,50]

n2

f2


(1)確定樣本頻率分布表中n1 , n2 , f1和f2的值;
(2)根據(jù)上述頻率分布表,畫(huà)出樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,求在該廠任取4人,至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案