7.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,若a=$\sqrt{3}$,A=$\frac{π}{3}$,則b+c的最大值為( 。
A.4B.3$\sqrt{3}$C.2$\sqrt{3}$D.2

分析 由正弦定理可得:$\frac{sinB}$=$\frac{c}{sinC}$=$\frac{\sqrt{3}}{sin\frac{π}{3}}$=2,于是b+c=2sinB+2sinC=2sinB+2sin$(\frac{2π}{3}-B)$=2$\sqrt{3}$sin$(B+\frac{π}{6})$,再利用三角函數(shù)的單調(diào)性與值域即可得出.

解答 解:由正弦定理可得:$\frac{sinB}$=$\frac{c}{sinC}$=$\frac{\sqrt{3}}{sin\frac{π}{3}}$=2,
∴b+c=2sinB+2sinC=2sinB+2sin$(\frac{2π}{3}-B)$
=2sinB+2$(\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}sinB)$=3sinB+$\sqrt{3}$cosB
=2$\sqrt{3}$sin$(B+\frac{π}{6})$≤2$\sqrt{3}$,當(dāng)且僅當(dāng)B=$\frac{π}{3}$時(shí)取等號(hào).
∴b+c的最大值為2$\sqrt{3}$.
故選:C.

點(diǎn)評(píng) 本題考查了正弦定理、和差公式、三角函數(shù)的單調(diào)性與值域,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$,證明:f(x)是R上的增函數(shù);
(2)解方程:log5(3-2•5x)=2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在正方體ABCD-A'B'C'D'中,點(diǎn)P在線段AD'上,且AP≤$\frac{1}{2}$AD'則異面直線CP與BA'所成角θ的取值范圍是[$\frac{π}{6}$,$\frac{π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間[-1,2]上單調(diào),則實(shí)數(shù)a的取值范圍為(  )
A.[2,+∞)B.(-∞,-1]C.(-∞,-1]∪[2,+∞)D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.角α的終邊在第一象限,則$\frac{sin\frac{α}{2}}{|sin\frac{α}{2}|}$+$\frac{cos\frac{α}{2}}{|cos\frac{α}{2}|}$的取值集合為(  )
A.{-2,2}B.{0,2}C.{2}D.{0,-2,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)p:實(shí)數(shù)x滿足:x2-4ax+3a2<0(a>0),q:實(shí)數(shù)x滿足:x=($\frac{1}{2}$)m-1,m∈(1,2).
(Ⅰ)若a=$\frac{1}{4}$,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(Ⅱ)q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=ex(sinx+a)在區(qū)間(0,π)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A.[-$\sqrt{2}$,+∞)B.[1,+∞)C.(-∞,-$\sqrt{2}$]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)命題p:?x∈R,都有ax2>-ax-1(a≠0)恒成立;命題q:圓x2+y2=a2與圓(x+3)2+(y-4)2=4外離.如果命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某產(chǎn)品關(guān)稅與市場(chǎng)供應(yīng)量P的關(guān)系近似地滿足:P(x)=2${\;}^{(1-kt){{(x-b)}{\;}^2}}}$(其中t為關(guān)稅的稅率,且t∈[0,$\frac{1}{2}}$],x為市場(chǎng)價(jià)格,b,k為正常數(shù)),當(dāng)t=$\frac{1}{8}$時(shí),市場(chǎng)供應(yīng)量曲線如圖所示:
(1)根據(jù)函數(shù)圖象求k,b的值;
(2)若市場(chǎng)需求量Q,它近似滿足Q(x)=2${\;}^{(11-\frac{1}{2}x)}}$.當(dāng)P=Q時(shí)的市場(chǎng)價(jià)格為均衡價(jià)格,為使均衡價(jià)格控制在不低于9元的范圍內(nèi),求稅率t的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案