精英家教網 > 高中數學 > 題目詳情
18.如圖,在正方體ABCD-A'B'C'D'中,點P在線段AD'上,且AP≤$\frac{1}{2}$AD'則異面直線CP與BA'所成角θ的取值范圍是[$\frac{π}{6}$,$\frac{π}{3}$].

分析 如圖,連結CD',則異面直線CP與BA'所成的角θ等于∠D'CP,由圖可知,當P點與A點重合時,可得θ=$\frac{π}{3}$.當P點無限接近D'點時,θ趨近于0,由于AP≤$\frac{1}{2}$AD',故得P在AD'中點時,θ最小,即可得到范圍.

解答 解:如圖,ABCD-A'B'C'D'是正方體,連結CD',則異面直線CP與BA'所成的角θ等于∠D'CP,
由圖可知,當P點與A點重合時,可得θ=$\frac{π}{3}$.
當P點無限接近D'點時,θ趨近于0,
∵AP≤$\frac{1}{2}$AD',故得P在AD'中點時,θ最小,
設正方體的邊長為1,則AD'=$\sqrt{2}$,CD'=$\sqrt{2}$,PC=$\frac{\sqrt{6}}{2}$
AP=$\frac{1}{2}$AD'=$\frac{\sqrt{2}}{2}$,
即:$cosθ=\frac{D′{C}^{2}+C{P}^{2}-D′{P}^{2}}{2D′C•CP}$=$\frac{\sqrt{3}}{2}$
∴$θ=\frac{π}{6}$.
所以異面直線CP與BA'所成角θ的取值范圍是[$\frac{π}{6}$,$\frac{π}{3}$].
故答案為:[$\frac{π}{6}$,$\frac{π}{3}$].

點評 本題考查了空間動點的變化,異面直線所成角的問題.找到所成的角,當P點移動是,觀察角的變化情況.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,其中左焦點為F(-2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.已知直線y=x+b與圓x2+y2-2x+4y-4=0相交于A,B兩點,O為坐標原點,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則實數b的值為1或-4.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.函數y=ax在[0,1]上最大值與最小值的和為3,則a=(  )
A.2B.$\frac{1}{2}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.如圖,設線段DA和平面ABC所成角為α(0<α<$\frac{π}{2}}$),二面角D-AB-C的平面角為β,則( 。
A.α≤β<πB.α≤β≤π-αC.$\frac{π}{2}-α≤β<π$D.$\frac{π}{2}-α≤β≤π-α$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知集合A={x|-1≤x≤2},B={|x|x<1},則A∪(∁RB)等于(  )
A.{x|x≥1}B.{x|x≥-1}C.{x|-1≤x≤2}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.已知a≥0且{y|y=2|x|,-2≤x≤a}=[m,n],記g(a)=n-m,則g(a)=$g(a)=\left\{\begin{array}{l}3,0≤a≤2\\{2^a}-1,a>2\end{array}\right.$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.在△ABC中,a,b,c分別為內角A,B,C所對的邊,若a=$\sqrt{3}$,A=$\frac{π}{3}$,則b+c的最大值為( 。
A.4B.3$\sqrt{3}$C.2$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.銷售甲、乙兩種商品所得利潤分別是P(單位:萬元)和Q(單位:萬元),它們與投入資金t(單位:萬元)的關系有經驗公式P=$\frac{1}{5}$t,Q=$\frac{3}{5}\sqrt{t}$.今將3萬元資金投入經營甲、乙兩種商品,其中對甲種商品投資x(單位:萬元),
(1)試建立總利潤y(單位:萬元)關于x的函數關系式;
(2)當對甲種商品投資x(單位:萬元)為多少時?總利潤y(單位:萬元)值最大.

查看答案和解析>>

同步練習冊答案