精英家教網 > 高中數學 > 題目詳情

已知,函數。
(I)記的表達式;
(II)是否存在,使函數在區(qū)間內的圖像上存在兩點,在該兩點處的切線相互垂直?若存在,求的取值范圍;若不存在,請說明理由。

(I)(II)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數的定義域為,若上為增函數,則稱為“一階比增函數”;若上為增函數,則稱為“二階比增函數”.我們把所有“一階比增函數”組成的集合記為,所有“二階比增函數”組成的集合記為.
(Ⅰ)已知函數,若,求實數的取值范圍;
(Ⅱ)已知,的部分函數值由下表給出,











 求證:;
(Ⅲ)定義集合
請問:是否存在常數,使得,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若存在,使得成立,求實數的取值范圍;
(2)解關于的不等式;
(3)若,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲廠以x 千克/小時的速度運輸生產某種產品(生產條件要求),每小時可獲得利潤是元.
(1)要使生產該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是奇函數,并且函數的圖像經過點(1,3).
(1)求實數的值;
(2)求函數的值域。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)已知函數y=ln(-x2+x-a)的定義域為(-2,3),求實數a的取值范圍;
(2)已知函數y=ln(-x2+x-a)在(-2,3)上有意義,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出,當每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知滿足不等式,求函數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,
(1)當時,解不等式;
(2)若,解關于的不等式

查看答案和解析>>

同步練習冊答案