分析 (1)設等差數(shù)列{an}的公差為d,由等差數(shù)列的通項公式,解方程可得d=0,a1=5,進而得到通項公式;
(2)根據(jù)運用數(shù)列{bn}的通項公式,利用錯位相減法進行數(shù)列求和.
解答 解:(1)等差數(shù)列{an}中,a3+a5=2a4=10,∴a4=5.
∵{an}的前n項和為Sn,S5=$\frac{5{(a}_{1}{+a}_{5})}{2}$=5a3=15,∴a3=3,
∴公差d=a4-a3=2,∴an=a3+(n-3)d=3+(n-3)•2=2n-3.
(2)∵${b_n}={({\frac{1}{2}})^n}•{a_n}$=(2n-3)$•\frac{1}{{2}^{n}}$,數(shù)列{bn}的前n和Tn.
∴Tn=$\frac{-1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$ ①,
∴$\frac{1}{2}$Tn=$\frac{-1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{3}{{2}^{4}}$+…+$\frac{2n-5}{{2}^{n}}$+$\frac{2n-3}{{2}^{n+1}}$ ②,
①-②可得$\frac{1}{2}$Tn=$\frac{-1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+…+$\frac{2}{{2}^{n}}$-$\frac{2n-3}{{2}^{n+1}}$=-$\frac{1}{2}$+$\frac{\frac{1}{2}[1{-(\frac{1}{2})}^{n-1}]}{1-\frac{1}{2}}$-$\frac{2n-3}{{2}^{n+1}}$,
化簡可得Tn=1-$\frac{2n+1}{{2}^{n}}$.
點評 本題主要考查等差數(shù)列的性質(zhì),等比數(shù)列的通項和求和公式的運用,用錯位相減法進行數(shù)列求和,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b | B. | a<b | C. | a=b | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 050 | B. | 5 051 | C. | 4 950 | D. | 4 951 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{2}$個單位 | B. | 向右平移$\frac{π}{2}$個單位 | ||
C. | 向左平移$\frac{π}{4}$個單位 | D. | 向右平移$\frac{π}{4}$個單位 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com