已知向量
m
=(
3
sinx,cosx),
p
=(2
3
,1)
.若
m
p
共線,則sinx•cosx=
2
5
2
5
分析:由向量關(guān)系可得1×
3
sinx-2
3
cosx=0,即sinx-2cosx=0,聯(lián)立同角三角函數(shù)的基本關(guān)系可解得sinx和cosx的值,相乘可得.
解答:解:∵
m
=(
3
sinx,cosx),
p
=(2
3
,1)
,
m
p
共線,
∴1×
3
sinx-2
3
cosx=0,即sinx-2cosx=0,
再由同角三角函數(shù)的基本關(guān)系可得sin2x+cos2x=1,
聯(lián)立解得
sinx=
2
5
5
cosx=
5
5
,或
sinx=-
2
5
5
cosx=-
5
5
,
故可得sinxcosx=
2
5

故答案為:
2
5
點(diǎn)評:本題考查向量的共線,以及同角三角函數(shù)的基本關(guān)系,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
p
=(2
3
,1)

(1)若
m
n
,求sinx•cosx的值;
(2)設(shè)△ABC的三邊a、b、c滿足b2=ac,且邊b所對的角B的取值集合為M,當(dāng)x∈M時,求函數(shù)f(x)=
m
n
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sinx-cosx,  1)
,
n
=(cosx,  
1
2
)
,若f(x)=
m
n

(1) 求函數(shù)f(x)的最小正周期;
(2) 已知△ABC的三內(nèi)角A、B、C的對邊分別為a、b、c,且c=3, f(
C
2
+
π
12
)=
3
2
(C為銳角),2sinA=sinB,求C、a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(
1
2
f(x),cosx),
m
n

(I)求f(x)的單調(diào)增區(qū)間及在[-
π
6
,
π
4
]
內(nèi)的值域;
(II)已知A為△ABC的內(nèi)角,若f(
A
2
)=1+
3
,a=1,b=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(cosx,-f(x))
,且
m
n

(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[0, 
π
2
]
時,函數(shù)g(x)=a[f(x)-
1
2
]+b
的最大值為3,最小值為0,試求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知向量
m
=(
3
sinx+cosx,1),
n
=(cosx,-f(x)),
m
n

(1)求f(x)的單調(diào)區(qū)間;
(2)已知A為△ABC的內(nèi)角,若f(
A
2
)=
1
2
+
3
2
,a=1,b=
2
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案