已知向量
m
=(
3
sinx-cosx,  1)
n
=(cosx,  
1
2
)
,若f(x)=
m
n

(1) 求函數(shù)f(x)的最小正周期;
(2) 已知△ABC的三內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c=3, f(
C
2
+
π
12
)=
3
2
(C為銳角),2sinA=sinB,求C、a、b的值.
分析:(1)利用向量的數(shù)量積公式表示出f(x);利用三角函數(shù)的二倍角公式及公式asinx+bcosx=
a2+b2
sin(x+α)

利用三角函數(shù)的周期公式求出周期.
(2)先求出角C,利用正弦定理將三角函數(shù)的關(guān)系轉(zhuǎn)化為邊的關(guān)系在,再利用余弦定理求出邊.
解答:解:(1)f(x)=
m
n
=
3
sinxcosx-cos2x+
1
2

=
3
2
sin2x-
1+cos2x
2
+
1
2

=
3
2
sin2x-
1
2
cos2x

=sin(2x-
π
6
)
(4分)
∴f(x)的最小正周期為π.(6分)
(2)∵f(
C
2
+
π
12
)=sinC=
3
2
, ∵0<C<
π
2
,∴C=
π
3
(8分)
∵2sinA=sinB.由正弦定理得b=2a,①(9分)
∵c=3,由余弦定理,得9=a2+b2-2abcos
π
3
,②(10分)
解①②組成的方程組,得
a=
3
b=2
3
.  。12分)
點(diǎn)評(píng):本題考查向量的數(shù)量積公式、考查三角函數(shù)的二倍角公式、考查三角函數(shù)的和差角公式、考查三角形中的正弦定理余弦定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
p
=(2
3
,1)

(1)若
m
n
,求sinx•cosx的值;
(2)設(shè)△ABC的三邊a、b、c滿足b2=ac,且邊b所對(duì)的角B的取值集合為M,當(dāng)x∈M時(shí),求函數(shù)f(x)=
m
n
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(
1
2
f(x),cosx),
m
n

(I)求f(x)的單調(diào)增區(qū)間及在[-
π
6
,
π
4
]
內(nèi)的值域;
(II)已知A為△ABC的內(nèi)角,若f(
A
2
)=1+
3
,a=1,b=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(cosx,-f(x))
,且
m
n
,
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[0, 
π
2
]
時(shí),函數(shù)g(x)=a[f(x)-
1
2
]+b
的最大值為3,最小值為0,試求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知向量
m
=(
3
sinx+cosx,1),
n
=(cosx,-f(x)),
m
n

(1)求f(x)的單調(diào)區(qū)間;
(2)已知A為△ABC的內(nèi)角,若f(
A
2
)=
1
2
+
3
2
,a=1,b=
2
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案