a
=(x,3),
b
=(3,1)且
a
b
,則x的值是( 。
A、-9B、-1C、1D、9
考點(diǎn):平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:根據(jù)“兩個(gè)向量平行,坐標(biāo)交叉相乘差為0”的原則,我們可以構(gòu)造一個(gè)關(guān)于x的方程,解方程即可得到答案
解答: 解:∵
a
=(x,3),
b
=(3,1),
又∵且
a
b
,
∴x-3×3=0,
解得x=9.
故選D.
點(diǎn)評(píng):本題主要考查了平面向量共線(平行)的坐標(biāo)表示,以及一元一次方程的求解,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記f(n)(x)為函數(shù)f(x)的n(n∈N*)階導(dǎo)函數(shù),即f(n)(x)=[f(n-1)(x)]′(n≥2,n∈N*).若f(x)=cosx且集合M={m|f(m)(x)=sinx,m∈N*,m≤2013},則集合M中元素的個(gè)數(shù)為(  )
A、1006B、1007
C、503D、504

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1=
2an,(0≤an
1
2
)
2an-1,(
1
2
an<1)
,若a1=
6
7
,則a17=( 。
A、
6
7
B、
5
7
C、
3
7
D、
1
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z∈C,若z2為純虛數(shù),則z在復(fù)平面上的對(duì)應(yīng)點(diǎn)落在( 。
A、實(shí)軸上
B、虛軸上
C、直線y=±x(x≠0)上
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)滿足(x+y-1)
4x2+9y2-36
=0,則點(diǎn)P運(yùn)動(dòng)后得到的圖象為( 。
A、一直線和一橢圓
B、一線段和一橢圓
C、一射線和一橢圓
D、兩射線和一橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

綿陽市農(nóng)科所研究出一種新的棉花品種,為監(jiān)測(cè)長(zhǎng)勢(shì)狀況.從甲、乙兩塊試驗(yàn)田中各抽取了10株棉花苗,量出它們的株高如下(單位:厘米):
37 21 31 20 29 19 32 23 25 33
10 30 47 27 46 14 26 10 44 46
(Ⅰ)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對(duì)甲、乙兩塊試驗(yàn)田中棉花棉的株高進(jìn)行比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(Ⅱ)從甲、乙兩塊試驗(yàn)田的棉花苗株高在[23,29]中抽3株,求至少各有1株分別屬于甲、乙兩塊試驗(yàn)田的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于(0,3)上的一切實(shí)數(shù)x,不等式(x-2)m<2x-1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:方程
x2
2
+
y2
m
=1表示焦點(diǎn)在y軸上的橢圓,命題q:關(guān)于x的不等式4x2-4mx+(4m-3)≥0在R上恒成立,若p∨q為真,?p為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某合資企業(yè)招聘夫?qū)W生時(shí)加試英語聽力,待測(cè)試的小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),若從中隨機(jī)選2人,其中恰為一男一女的概率為
8
15

(Ⅰ)求該小組中女生的人數(shù):
(Ⅱ)若該小組中每個(gè)女生通過測(cè)試的概率均為
3
4
,每個(gè)男生通過測(cè)試的概率均為
2
3
;現(xiàn)對(duì)該小組中女生甲、女生乙和男生丙、男生丁4人進(jìn)行測(cè)試,記這4人中通過測(cè)試的人數(shù)為隨機(jī)變量X.求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案