精英家教網 > 高中數學 > 題目詳情
(B題)已知橢圓C的中心在坐標原點,焦點在x軸上,長軸長為2
3
,離心率為
3
3

(1)求橢圓C的方程;
(2)設點A(-1,1),過原點O的直線交橢圓于點B,C,求△ABC面積的最大值.
(1)設橢圓C的方程為
x2
a2
+
y2
b2
=1
(a>b>0).
由題意,得
2a=2
3
c
a
=
3
3
,解得
a=
3
c=1
,所以b2=2.
所求的橢圓方程為
x2
3
+
y2
2
=1

(2)當BC垂直于x軸時,因點A(-1,1),|BC|=2
2
,S△ABC=
2
,
當BC不垂直于x軸時,設該直線方程為y=kx,代入
x2
3
+
y2
2
=1
,得x2=
6
2+3k2
,
|BC|=2
1+k2
|x|=2
6
1+k2
3k2+2
,又點A到BC的距離d=
|1+k|
1+k2
,
所以S△ABC=
1
2
|BC|
•d=
6
|k+1|
3k2+2
=
6
(k+1)2
3k2+2
=
2
1+
6k+1
3k2+2
,
設6k+1=t,得S△ABC=
2
1+
12t
t2-2t+25
=
2
1+
12
t+
25
t
-2
5
,此時k=
2
3

綜上知當k=
2
3
,時△ABC面積有最大值為
5
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

直線L:y=kx+1與橢圓C:ax2+y2=2(a>1)交于A、B兩點,以OA、OB為鄰邊作平行四邊形OAPB(O為坐標原點).
(1)若k=1,且四邊形OAPB為矩形,求a的值;
(2)若a=2,當k變化時(k∈R),求點P的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在以點O為圓心,AB為直徑的半圓中,D為半圓弧的中心,P為半圓弧上一點,且AB=4,∠POB=30°,雙曲線C以A,B為焦點且經過點P.
(1)建立適當的平面直角坐標系,求雙曲線C的方程;
(2)設過點D的直線l與雙曲線C相交于不同兩點E、F,若△OEF的面積不小于2
2
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知雙曲線的中心在原點O,其中一條準線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點.
(1)求此雙曲線的標準方程;
(2)(普通中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.
(重點中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,C是直線L1:y=mx+6上任一點(A、B、C三點不共線)試問:是否存在實數k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知三點P(5,2)、F1(-6,0)、F2(6,0).
(Ⅰ)求以F1、F2為焦點且過點P的橢圓標準方程;
(Ⅱ)設點P、F1、F2關于直線y=x的對稱點分別為P′、F1′、F2′,求以F1′、F2′為焦點且過點P′的雙曲線的標準方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

【理科】已知雙曲線的中心在坐標原點O,一條準線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點.
(1)求此雙曲線的方程;
(2)設直線:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,橢圓C的上、下頂點分別為A1,A2,左、右頂點分別為B1,B2,左、右焦點分別為F1,F2.原點到直線A2B2的距離為
2
5
5

(1)求橢圓C的方程;
(2)過原點且斜率為
1
2
的直線l,與橢圓交于E,F點,試判斷∠EF2F是銳角、直角還是鈍角,并寫出理由;
(3)P是橢圓上異于A1,A2的任一點,直線PA1,PA2,分別交x軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T.證明:線段OT的長為定值,并求出該定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

拋物線的頂點在原點,焦點在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點,且|AB|=
8
6
11

(1)求拋物線的方程;
(2)在x軸上是否存在一點C,使△ABC為正三角形?若存在,求出C點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓C1x2+y2=
4
5
,直線l:y=x+m(m>0)與圓C1相切,且交橢圓C2
x2
a2
+
y2
b2
=1(a>b>0)
于A1,B1兩點,c是橢圓C2的半焦距,c=
3
b

(1)求m的值;
(2)O為坐標原點,若
OA1
OB1
,求橢圓C2的方程;
(3)在(2)的條件下,設橢圓C2的左、右頂點分別為A,B,動點S(x1,y1)∈C2(y1>0)直線AS,BS與直線x=
34
15
分別交于M,N兩點,求線段MN的長度的最小值.

查看答案和解析>>

同步練習冊答案