橢圓
x2
a2
+
y2
b2
=1(a>b>0)上兩點(diǎn)A,B與中心O的連線互相垂直,則
1
|OA|2
+
1
|OB|2
=______.
設(shè)當(dāng)直線OA斜率存在且不為0時(shí),設(shè)方程為y=kx,
∵A,B分別為橢圓上的兩點(diǎn),且OA⊥OB.∴直線OB方程為y=-
1
K
x
設(shè)A(x1,y1),B(x2,y2),把y=kx代入
x2
a2
+
y2
b2
=1得 X12=
a2b2
b2+a2k2
,∴y12=
k2a2b2 
b2+a2k2

把y=-
1
k
x代入
x2
a2
+
y2
b2
=1得   x22=
a2b2k2 
a2+b2k2
,∴y22=
ab2
a2+b2k2

1
|OA|2
+
1
|OB| 2
=
1
x12+y12
+
1
x22+y22 
=
1
a2b2
b2+a2k2
+
k2a2b2
b2+a2k2
+
1
a2b2k2
a2+b2k2
+
a2b2
a2+b2k2
=
a2+b2
a2b2

當(dāng)直線OA,OB其中一條斜率不存在時(shí),則另一條斜率為0此時(shí)
1
|OA|2
+
1
|OB|2
=
a2+b2
a2b2

綜上,
1
|OA|2
+
1
|OB|2
=
a2+b2
a2b2

故答案為:
a2+b2
a2b2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),求證:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè) A(x1,y1)、B(x2,y2)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的兩點(diǎn),O為坐標(biāo)原點(diǎn),向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
,
y2
b
)
m
n
=0

(1)若A點(diǎn)坐標(biāo)為(a,0),求點(diǎn)B的坐標(biāo);
(2)設(shè)
OM
=cosθ•
OA
+sinθ•
OB
,證明點(diǎn)M在橢圓上;
(3)若點(diǎn)P、Q為橢圓 上的兩點(diǎn),且
PQ
OB
,試問:線段PQ能否被直線OA平分?若能平分,請加以證明;若不能平分,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川 題型:解答題

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案