2.已知傾斜角為α的直線l與直線m:x-2y+3=0垂直,則cos2α=-$\frac{3}{5}$.

分析 由題意可得:tanα=-2.再利用倍角公式即可得出.

解答 解:由已知tanα=-2,∴cos2α=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=$\frac{1-4}{1+4}$=-$\frac{3}{5}$.
故答案為-$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查了相互垂直的直線斜率之間的關(guān)系、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)F是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一個(gè)焦點(diǎn),若C上存在點(diǎn)P,使線段PF的中點(diǎn)恰為其虛軸的一個(gè)端點(diǎn),則雙曲線C的漸近線方程為y=±2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=a(x2-1)-lnx.
(1)若y=f(x)在x=2處取得極小值,求a的值;
(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范圍;
(3)求證:當(dāng)n≥2時(shí),$\frac{1}{ln2}+\frac{1}{ln3}+…+\frac{1}{lnn}>\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列函數(shù)能用二分法求零點(diǎn)的是(  )
A.f(x)=x2B.f(x)=$\sqrt{-{x^2}+1}$C.f(x)=ln(x+2)2D.f(x)=$\frac{1}{{|{{2^x}-3}|}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=x3+x,若$2+f({log_{\frac{1}{a}}}2)>0$,則實(shí)數(shù)a的取值范圍是(0,1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下面四個(gè)推理,不屬于演繹推理的是(  )
A.因?yàn)楹瘮?shù)y=sinx(x∈R)的值域?yàn)閇-1,1],2x-1∈R,所以y=sin(2x-1)(x∈R)的值域也為[-1,1]
B.昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿
C.在平面中,對(duì)于三條不同的直線a,b,c,若a∥b,b∥c則a∥c,將此結(jié)論放到空間中也是如此
D.如果一個(gè)人在墻上寫字的位置與他的視線平行,那么,墻上字跡離地的高度大約是他的身高,兇手在墻上寫字的位置與他的視線平行,福爾摩斯量得墻壁上的字跡距地面六尺多,于是,他得出了兇手身高六尺多的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在數(shù)列{an}中,a1=2,${a}_{n+1}=\frac{2{a}_{n}}{n+1}-1$,則a3=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長(zhǎng)為$2\sqrt{3}$,則直線的傾斜角為( 。
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$-\frac{π}{3}$或$\frac{π}{3}$C.$-\frac{π}{6}$或$\frac{π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知當(dāng)x>0時(shí),不等式x2-mx+4>0恒成立,則實(shí)數(shù)m的取值范圍是(-∞,4).

查看答案和解析>>

同步練習(xí)冊(cè)答案