14.在數(shù)列{an}中,a1=2,${a}_{n+1}=\frac{2{a}_{n}}{n+1}-1$,則a3=$-\frac{1}{3}$.

分析 利用數(shù)列的首項以及遞推關系式逐步求解即可.

解答 解:在數(shù)列{an}中,a1=2,${a}_{n+1}=\frac{2{a}_{n}}{n+1}-1$,則a2=$\frac{2{a}_{1}}{2}-1$=1,
a3=$\frac{2{a}_{2}}{3}-1$=-$\frac{1}{3}$.
故答案為:-$\frac{1}{3}$.

點評 本題考查數(shù)列的遞推關系式的應用,考查計算能力,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.在三角形ABC中,“sinA>sinB”是“A>B”的(  )
A.充分不必要條件B.必要而不充分條件
C.充要條件D.以上都不是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某人玩擲骰子(骰子是一個質地均勻的正方體,它的各面上分別標有點數(shù)字1、2、3、4、5、6)的游戲,每輪擲兩次.第n輪擲出的點數(shù)依次為xn,yn.如果$\frac{2}{x_n}+\frac{2}{y_n}<1(n=1,2,…)$,則認為第n輪游戲過關,游戲過關后,則游戲終止.如果某輪游戲不過關,則下一輪繼續(xù)進行,直至過關后終止.
(Ⅰ)求游戲第一輪過關的概率;
(Ⅱ)如果游戲進行到第3輪,第3輪后不管游戲是否過關,都終止游戲.寫出投擲輪數(shù)X的分布列,并求X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知傾斜角為α的直線l與直線m:x-2y+3=0垂直,則cos2α=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知等差數(shù)列{an}的前n項和為Sn,且3a3=a6+4若S5<10則a2的取值范圍是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知長方體同一個頂點的三條棱長分別為2,3,4,則該長方體的外接球的表面積等于( 。
A.13πB.25πC.29πD.36π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知等差數(shù)列{an}的前三項分別為λ,6,3λ,前n項和為Sn,且Sk=165.
(1)求λ及k的值;
(2)設$_{n}=\frac{3}{2{S}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知向量$\overrightarrow{a}(x,2),\overrightarrow=(2,1),\overrightarrow{c}=(3,x)$,若$\overrightarrow{a}∥\overrightarrow$,則$\overrightarrow{a}•\overrightarrow{c}$=20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.給出下列四個命題:
①函數(shù)f(x)=x+$\frac{9}{x}$的最小值為6;    
②不等式$\frac{2x}{x+1}$<1的解集是{x|-1<x<1};
③若a>b>-1,則$\frac{a}{1+a}$>$\frac{1+b}$;        
④若a>b,c>d,則ac>bd.
所有正確命題的序號是②③.

查看答案和解析>>

同步練習冊答案