cos22°cos38°-sin22°sin38°的值是( 。
A、
3
2
B、
1
2
C、-
1
2
D、-
3
2
考點:兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:由條件直接利用兩角和的余弦公式,計算求得結(jié)果.
解答: 解:cos22°cos38°-sin22°sin38°=cos(22°+38°)=cos60°=
1
2
,
故選:B.
點評:本題主要考查兩角和的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在極坐標系下,點P(2,
π
2
)到直線ρcos(θ-
π
3
)=2的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足
x≥1
y≥1
x+y-3≤0
,則目標函數(shù)是z=2x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在集合{1,2,3,4,5}中任取一個偶數(shù)a和一個奇數(shù)b構(gòu)成以原點為起點的向量
α
=(a,b),從所有得到的以原點為起點的向量中任取兩個向量為鄰邊作平行四邊形,記所有作成的平行四邊形的個數(shù)為t,在區(qū)間[1,
t
3
]和[2,4]分別各取一個數(shù),記為m和n,則方程
x2
m2
+
y2
n2
=1表示焦點在x軸上的橢圓的概率是( 。
A、
1
3
B、
3
4
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,asinAsinB+bcos2A=
2
a,則
b
a
等于(  )
A、2
3
B、2
2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)得到的回歸直線方程
y
=
b
x+
a
,那么下面說法不正確的是( 。
A、直線
y
=
b
x+
a
必經(jīng)過點(
.
x
,
.
y
B、直線
y
=
b
x+
a
至少經(jīng)過點(x1,y1),(x2,y2),…,(xn,yn)中的一個點
C、直線
y
=
b
x+
a
與各點(x1,y1),(x2,y2),…,(xn,yn)距離差平方的總和
n
i=1
[yi-(
b
xi+
a
)]
2
是該坐標平面上所有直線與這些點的距離差平方的總和中最小的直線
D、直線
y
=
b
x+
a
的斜率為
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知C>1,a=
C+1
-
C
,b=
C
-
C-1
,則正確的結(jié)論是( 。
A、a<bB、a>b
C、a=bD、a與b的大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx-
1
2
x(x∈[0,π]),那么下列結(jié)論正確的是(  )
A、f(x)在[0,
π
2
]上是增函數(shù)
B、f(x)在[
π
6
,π]上是減函數(shù)
C、?x∈[0,π],f(x)≤f(
π
3
D、?x∈[0,π],f(x)>f(
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下說法,正確的個數(shù)為( 。
①公安人員由罪犯的腳印的尺寸估計罪犯的身高情況,所運用的是類比推理.
②農(nóng)諺“瑞雪兆豐年”是通過歸納推理得到的.
③由平面幾何中圓的一些性質(zhì),推測出球的某些性質(zhì)這是運用的類比推理.
④個位是5的整數(shù)是5的倍數(shù),2375的個位是5,因此2375是5的倍數(shù),這是運用的演繹推理.
A、0B、2C、3D、4

查看答案和解析>>

同步練習冊答案