設(shè)△ABC中,tanA+tanB+
3
=
3
tanAtanB
,cosAcosB=1-sinAsinB,則此三角形是
等邊
等邊
三角形.
分析:先根據(jù)tanA+tanB+
3
=
3
tanAtanB結(jié)兩角和的正切公式求出A+B=120°;在結(jié)合cosAcosB=1-sinAsinB即可得到結(jié)論.
解答:解:∵tanA+tanB+
3
=
3
tanAtanB⇒tanA+tanB=
3
tanAtanB-
3
⇒tan(A+B)=
tanA+tanB
1-tanAtanB
=-
3

∴A+B=120°;
∵cosAcosB=1-sinAsinB⇒cosAcosB+sinAsinB=1⇒cos(A-B)=1⇒A=B
∴A=B=60°.
故答案為:等邊
點評:本題主要考查三角形的形狀判斷.解決這類問題的關(guān)鍵在于對三角公式的熟練掌握以及靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,2sinAcosB=sinCcosB+cosCsinB.
(Ⅰ)求角B的大小;
(Ⅱ)設(shè)向量
m
=(cosA,cos2A),
n
=(-
12
5
, 1)
,求當(dāng)
m
n
取最小值時,tan(A-
π
4
)
值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)內(nèi)角A、B、C的對邊分別為a、b、c,且tan(
π
4
-C)=
3
-2

(1)求角C的大。
(2)若c=
7
且a+b=5求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AD為BC邊上的高,垂足D在邊BC上,∠CAD=2∠BAD=2θ(0<θ<
π
4
),BD=1,設(shè)△ABD,△ACD的面積分別為S1,S2
(Ⅰ)當(dāng)
S2
S1
>4時,求tanθ的取值范圍;
(Ⅱ)當(dāng)S1S2
9
4
時,求tanθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在斜邊為AB的Rt△ABC中,過A作PA⊥平面ABC,AM⊥PB于M,
AN⊥PC于N.(Ⅰ)求證:BC⊥面PAC;
(Ⅱ)求證:PB⊥面AMN.
(Ⅲ)若PA=AB=4,設(shè)∠BPC=θ,試用tanθ表示△AMN 的面積,當(dāng)tanθ取何值時,△AMN的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知角A、B、C所對的邊分別是a、b、c,且a=2,∠A=
π
4
,設(shè)∠C=θ.
(1)θ表示b;
(2)若tanθ=-
4
3
,求
CA
CB
的值.

查看答案和解析>>

同步練習(xí)冊答案