. (本小題滿分12分)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(1)求證:BD⊥平面PAC;

(2)若PA=AB,求PB與AC所成角的余弦值;

(3)當(dāng)平面PBC與平面PDC垂直時,求PA的長.

 

 

【答案】

 

(1)證明:因為四邊形ABCD是菱形,所以AC⊥BD.

又因為PA⊥平面ABCD,所以PA⊥BD,所以BD⊥平面PAC.

(2)設(shè)AC∩BD=O.

因為∠BAD=60°,PA=AB=2,所以BO=1,AO=CO=.

 

如圖,以O(shè)為坐標(biāo)原點,OB、OC所在直線及點O所在且與PA平行的直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系O-xyz,則P(0,-,2),A(0,-,0),B(1,0,0),C(0,,0).

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知關(guān)于的一元二次函數(shù)  (Ⅰ)設(shè)集合P={1,2, 3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)作為,求函數(shù)在區(qū)間[上是增函數(shù)的概率;(Ⅱ)設(shè)點()是區(qū)域內(nèi)的隨機(jī)點,求函數(shù)上是增函數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分) 一幾何體的三視圖如圖所示,,A1A=,AB=,AC=2,A1C1=1,在線段上且=.

(I)證明:平面⊥平面;

(II)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案