設函數(shù)f(x)=數(shù)學公式-ax(a>0),g(x)=bx2+2b-1.
(I)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,求a,b的值;
(II)當a=1-2b時,若函數(shù)f(x)+g(x)在區(qū)間(-2,0)內恰有兩個零點,求a的取值范圍;
(III)當a=1-2b=1時,求函數(shù)f(x)+g(x)在區(qū)間[t,t+3]上的最大值.

解:(I)f'(x)=x2-a,g'(x)=2bx.
因為曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,
所以f(1)=g(1),且f'(1)=g'(1),即,且1-a=2b,
解得
(II)記h(x)=f(x)+g(x),
當a=1-2b時,,h'(x)=x2+(1-a)x-a=(x+1)(x-a),
令h'(x)=0,得x1=-1,x2=a>0.
當x變化時,h'(x),h(x)的變化情況如下表:
x(-∞,-1)-1(-1,a)a(a,+∞)
h'(x)+0-0+
h(x)極大值極小值
所以函數(shù)h(x)的單調遞增區(qū)間為(-∞,-1),(a,+∞);單調遞減區(qū)間為(-1,a),
故h(x)在區(qū)間(-2,-1)內單調遞增,在區(qū)間(-1,0)內單調遞減,
從而函數(shù)h(x)在區(qū)間(-2,0)內恰有兩個零點,當且僅當,解得,
所以a的取值范圍是
(III)記h(x)=f(x)+g(x),當a=1-2b=1時,
由(II)可知,函數(shù)h(x)的單調遞增區(qū)間為(-∞,-1),(1,+∞);單調遞減區(qū)間為(-1,1).
①當t+3<-1時,即t<-4時,h(x)在區(qū)間[t,t+3]上單調遞增,
所以h(x)在區(qū)間[t,t+3]上的最大值為;
②當t<-1且-1≤t+3<1,即-4≤t<-2時,h(x)在區(qū)間[t,-1)上單調遞增,在區(qū)間[-1,t+3]上單調遞減,
所以h(x)在區(qū)間[t,t+3]上的最大值為
當t<-1且t+3≥1,即-2≤t<-1時,t+3<2且h(2)=h(-1)=-,
所以h(x)在區(qū)間[t,t+3]上的最大值為
③當-1≤t<1時,t+3≥2>1,h(x)在區(qū)間[t,1)上單調遞減,在區(qū)間[1,t+3]上單調遞增,
而最大值為h(t)與h(t+3)中的較大者.
由h(t+3)-h(t)=3(t+1)(t+2)知,當-1≤t<1時,h(t+3)≥h(t),
所以h(x)在區(qū)間[t,t+3]上的最大值為;
④當t≥1時,h(x)在區(qū)間[t,t+3]上單調遞增,
所以h(x)在區(qū)間[t,t+3]上的最大值為
分析:(I)求出f'(x),g'(x),由題意得f(1)=g(1),且f'(1)=g'(1),解該方程組即可;
(II)記h(x)=f(x)+g(x),當a=1-2b時,,利用導數(shù)可研究其單調性、極值情況,由函數(shù)在(-2,0)內有兩零點可得端點處函數(shù)值及極值符號,由此得一不等式組,解出即可;
(III)當a=1-2b=1時,.由(II)可知,函數(shù)h(x)的單調區(qū)間及極值點,按照在區(qū)間[t,t+3]內沒有極值點,一個極值點,兩個極值點分類討論,結合圖象及函數(shù)的單調性即可求得其最大值;
點評:本題考查利用導數(shù)研究曲線上某點切線方程、函數(shù)的零點及函數(shù)在閉區(qū)間上的最值問題,考查分類討論思想、數(shù)形結合思想,考查學生綜合運用知識分析解決問題的能力,綜合性強,難度大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=A+Bsinx,若B<0時,f(x)的最大值是
3
2
,最小值是-
1
2
,則A=
 
,B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
a
b
其中向量
a
=(2cosx,1),b=(cosx,
3
sin2x+m)

(1)求函數(shù)f(x)的最小正周期和在[0,π]上的單調遞增區(qū)間;
(2)當x∈[0,
π
6
]
時,f(x)的最大值為4,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a+bcosx+csinx的圖象過點(0,1)和點(
π
2
,1)
,當x∈[0,
π
2
]
時,|f(x)|<2,則實數(shù)a的取值范圍是(  )
A、-
2
<a≤1
B、1≤a<4+3
2
C、-
2
<a<4+3
2
D、-a<a<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,-1)(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別為a、b、c,若f(A)=-
1
2
,且a=
3
,b+c=3,(b>c),求b與c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinωx+cosωx,sinωx)
b
=(sinωx-cosωx,2
3
cosωx),設函數(shù)f(x)=
a
b
(x∈R)的圖象關于直線x=
π
3
對稱,其中常數(shù)ω∈(0,2)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
12
個單位,得到函數(shù)g(x)的圖象,用五點法作出函數(shù)g(x)在區(qū)間[-
π
2
,
π
2
]的圖象.

查看答案和解析>>

同步練習冊答案