【題目】已知函數(shù),
(1)若,求函數(shù)的極值;
(2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(3)若對(duì)內(nèi)任意一個(gè),都有 成立,求的取值范圍.
【答案】(1) 的極小值是, 沒有極大值;(2)答案見解析;(3) .
【解析】試題分析:
(1)的定義域?yàn)?/span>,且,結(jié)合導(dǎo)函數(shù)的解析式研究函數(shù)的極值可得的極小值是, 沒有極大值;
(2),則,分類討論可得:
①當(dāng)時(shí), 在上單調(diào)遞減,在上單調(diào)遞增;
②當(dāng)時(shí),函數(shù)在上單調(diào)遞增;
(3)原問(wèn)題等價(jià)于“函數(shù)在上的最小值大于零”
結(jié)合(2)的結(jié)論分類討論:①;②;③;④四種情況可得的范圍是: .
試題解析:
(1)的定義域?yàn)?/span>,
當(dāng)時(shí), , ,
3 | |||
— | 0 | + | |
極小 |
所以的極小值是, 沒有極大值;
(2),
,
①當(dāng)時(shí),即時(shí),在上,在上,
所以在上單調(diào)遞減,在上單調(diào)遞增;
②當(dāng),即時(shí),在上,
所以,函數(shù)在上單調(diào)遞增;
(3)“對(duì)內(nèi)任意一個(gè),都有成立”等價(jià)于
“函數(shù)在上的最小值大于零”
由(2)可知
①當(dāng)時(shí), 在上單調(diào)遞增,所以,解得;
②當(dāng),即時(shí), 在上單調(diào)遞減,
所以的最小值為可得,
因?yàn)?/span>,所以;
③當(dāng),即時(shí), 在上單調(diào)遞增,
所以最小值為,由可得,所以;
④當(dāng),即時(shí),可得最小值為,
因?yàn)?/span>, ,所以,
故,恒成立.
綜上討論可得所求的范圍是: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中;
:實(shí)數(shù)滿足.
(Ⅰ)若,且為真,求實(shí)數(shù)的取值范圍;
(Ⅱ)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,已知某曲線C的極坐標(biāo)方程為,直線的極坐標(biāo)方程為
(1)求該曲線C的直角坐標(biāo)系方程及離心率
(2)已知點(diǎn)為曲線C上的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)為迎接校運(yùn)動(dòng)會(huì)的到來(lái),在三年級(jí)招募了16名男志愿者和14名女志愿者.調(diào)查發(fā)現(xiàn),男、女志愿者中分別各有10人和6人喜歡運(yùn)動(dòng),其余人員不喜歡運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表,并說(shuō)明是否有95%的把握認(rèn)為性別與喜歡運(yùn)動(dòng)有關(guān);
喜歡運(yùn)動(dòng) | 不喜歡運(yùn)動(dòng) | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
(2)如果喜歡運(yùn)動(dòng)的女志愿者中恰有4人懂得醫(yī)療救護(hù),現(xiàn)從喜歡運(yùn)動(dòng)的女志愿者中抽取2名負(fù)責(zé)處理應(yīng)急事件,求抽出的2名志愿者都懂得醫(yī)療救護(hù)的概率.
附:K2=,
P(K2≥k0) | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn).已知f(x)=x2+bx+c
(1)當(dāng)b=2,c=-6時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)已知f(x)有兩個(gè)不動(dòng)點(diǎn)為,求函數(shù)y=f(x)的零點(diǎn);
(3)在(2)的條件下,求不等式f(x)>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知4sin2 .
(1)求角C的大;
(2)若c= ,求a﹣b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx - .
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)證明:當(dāng)x>1時(shí),f(x)<x-1;
(3)確定實(shí)數(shù)k的所有可能取值,使得存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)>k(x-1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)設(shè),若在上的值域?yàn)?/span>,求實(shí)數(shù)的值;
(3)若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣l|+|x﹣3|.
(1)解不等式f(x)≤6;
(2)若不等式f(x)≥ax﹣1對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com