如圖,在直角坐標系中有一直角梯形,的中點為,,,,以為焦點的橢圓經過點.
(1)求橢圓的標準方程;
(2)若點,問是否存在直線與橢圓交于兩點且,若存在,求出直線的斜率的取值范圍;若不存在,請說明理由.
19.解:
∵AB="4,   " BC="3,  " ∴AC=5
∴CA+CB=8
∴a="4  " ∵c="2   " ∴b2=12

(2)設直線l:y="kx+m " 設M(x1,  y1)  N(x2,  y2)



設MN中點F(x0,  y0

∵|ME|="|NE|    " ∴EF⊥MN
∴kEF·k=-1

∴m=-(4k2+3)代入①
∴16k2+12>(4k2+3)2
∴16k4+8k2-3<0

當k=0時符合條件,k不存在(舍)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦點為,點在橢圓上,若,則___.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本題14分)過點的橢圓)的離心率為,橢圓與軸的交于兩點,),,),過點的直線與橢圓交于另一點,并與軸交于點,直線與直線叫與點
(I)當直線過橢圓右交點時,求線段的長;
(II)當點異于兩點時,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線的焦點F恰好是橢圓的右焦點,且兩條曲線交點的連線過點F,則該橢圓的離心率為____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點,橢圓與直線交于點、,則的周長為(  )
A.4B.8C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點(5,0)的橢圓與雙曲線有共同的焦點,
則該橢圓的短軸長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,左焦點為,右頂點為,設點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,過P點向橢圓的長軸做垂線,垂足為Q求線段PQ的中點的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知AB是過橢圓=1左焦點F1的弦,且,其中 是橢圓的右焦點,則弦AB的長是_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案