已知
a
,
b
,
c
在同一平面內(nèi),且
a
=(-1,2).
(1)若
c
=(m-1,3m),且
c
a
,求m的值;
(2)若|
b
|=
5
2
,且(
a
+2
b
)⊥(2
a
-
b
),求向量
a
b
的夾角.
考點:平面向量數(shù)量積的運算,平面向量共線(平行)的坐標表示
專題:平面向量及應用
分析:(1)利用向量共線定理即可得出;
(2)利用向量垂直與數(shù)量積的關(guān)系即可得出.
解答: 解:(1)由
c
a
,得:2(m-1)+3m=0,解得 m=
2
5

(2)由(
a
+2
b
)⊥(2
a
-
b
)
,得:(
a
+2
b
)•(2
a
-
b
)=0

2
a
2
+3
a
b
-2
b
2
=0
,
10+3
a
b
-
5
2
=0

a
b
=-
5
2

|
a
||
b
|cosθ=-
5
2
,
5
×
5
2
cosθ=-
5
2
,cosθ=-1
向量
a
b
的夾角為π.
點評:本題考查了向量共線定理、向量垂直與數(shù)量積的關(guān)系、向量的夾角,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的側(cè)棱都相等,底面ABCD是正方形,O為對角線AC、BD的交點,PO=OA.
(1)證明:BC∥面PAD;
(2)求直線PA與面ABCD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ln(-x2+8x+20)的定義域記為A,集合B={m|1-m<x<1+m},若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a•2x+a-2
2x+1
(x∈R)是奇函數(shù)
(1)求實數(shù)a的值;  
(2)判斷并證明函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(α)=
tan(π-α)•cos(2π-α)•sin(
π
2
+α)
cos(-α-π)

(1)化簡f(α);
(2)若f(α)=
4
5
,且α是第二象限角,求cos(2α+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果函數(shù)f(x)是定義在R上的增函數(shù),且f(x•y)=f(x)+f(y)對于任何實數(shù)x,y都成立,
(1)求f(0)的值;
(2)證明:f(
x
y
)=f(x)-f(y);
(3)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(ax2-(a+1)x+1)ex,a∈R.
(1)當a=1時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C1的參數(shù)方程
x=2cosφ
y=3sinφ
(φ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ=2,正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,
π
3
),設(shè)P為C1上任意一點,則|PA|2+|PB|2+|PC|2+|PD|2的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列敘述正確的序號是
 

①對于定義在R上的函數(shù)f(x),若f(-3)=f(3),則函數(shù)f(x)不是奇函數(shù);
②定義在R上的函數(shù)f(x),在區(qū)間(-∞,0]上是單調(diào)增函數(shù),在區(qū)間(0,+∞)上也是單調(diào)增函數(shù),則函數(shù)f(x)在R上是單調(diào)增函數(shù);
③已知函數(shù)的解析式為y=x2,它的值域為{4,9},那么這樣的函數(shù)有9個;
④對于任意的x1,x2∈(0,+∞),若函數(shù)f(x)=log2x,則
f(x1)+f(x2)
2
f(
x1+x2
2
)

查看答案和解析>>

同步練習冊答案