8.已知f(x)=ax7-bx5+cx3+2,且f(-5)=m,則f(5)的值為( 。
A.2-mB.4C.2mD.-m+4

分析 由f(-5)=-55a+55b-53c+2=m.知55a-55b+53c=2-m,由此能求出f(5)的值.

解答 解:∵f(x)=ax7-bx5+cx3+2,且f(-5)=m,
∴f(-5)=-55a+55b-53c+2=m.
∴55a-55b+53c=2-m,
∴f(5)=55a-55b+53c+2=-m+4.
故選:D.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等邊△ABC的邊長為$\sqrt{5}$,則$\overrightarrow{AB}•\overrightarrow{BC}$=( 。
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$.
(1)求角A的大;
(2)若a=$\sqrt{3}$,b=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,AB、CD是⊙O的兩條直徑,P是圓周上任一點,作PM⊥AB,PN⊥CD,AH⊥CD,求證:MN=AH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,同時滿足兩個條件“①?x∈R,f($\frac{π}{12}+x$)+f($\frac{π}{12}-x$)=0;②當(dāng)-$\frac{π}{6}$<x<$\frac{π}{3}$時,f′(x)>0”的一個函數(shù)是( 。
A.f(x)=sin(2x+$\frac{π}{6}$)B.f(x)=cos(2x+$\frac{π}{3}$)C.f(x)=sin(2x-$\frac{π}{6}$)D.f(x)=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(2-\frac{a}{2})x+2,x≤1}\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么a的取值范圍是[$\frac{8}{3}$,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的函數(shù)是( 。
A.y=x+1B.y=-x2+1C.y=|x|+1D.$y=1-\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若α,β∈(0,π)且 $tanα=\frac{1}{2},tanβ=\frac{1}{3}$,則α+β=(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{7π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知A(0,2),B(3,1)是橢圓G:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$上的兩點.
(1)求橢圓G的離心率;
(2)已知直線l過點B,且與橢圓G交于另一點C(不同于點A),若以BC為直徑的圓經(jīng)過點A,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案