在數(shù)學(xué)中“所有”一詞,叫做全稱量詞,用符號(hào)“?”表示;“存在”一詞,叫做存在量詞,用符號(hào)“?”表示.設(shè)f(x)=
x2-3x+3
x-2
(x>2)
,g(x)=ax(a>1,x>2).
①若?x0∈(2,+∞),使f(x0)=m成立,則實(shí)數(shù)m的取值范圍為______;
②若?x1∈(2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為______.
①由f(x)=
x2-3x+3
x-2
=
(x-2)2+(x-2)+1
x-2
=(x-2)+
1
x-2
+1
,
因?yàn)閤>2,所以由基本不等式得f(x)=(x-2)+
1
x-2
+1≥2
(x-2)?
1
x-2
+1=3
,
所以函數(shù)f(x)的值域是[3,+∞),所以要使?x0∈(2,+∞),使f(x0)=m成立,則m≥3,
即實(shí)數(shù)m的取值范圍為[3,+∞).
②因?yàn)閍>1,x>2,所以g(x)≥a2,由①知f(x)的值域是[3,+∞),
所以要使?x1∈(2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),
則有a2≤3,解得1<a≤
3
,即實(shí)數(shù)a的取值范圍為(1,
3
].
故答案為:①[3,+∞),②(1,
3
].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)中“所有”一詞,叫做全稱量詞,用符號(hào)“?”表示;“存在”一詞,叫做存在量詞,用符號(hào)“?”表示.設(shè)f(x)=
x2-3x+32
(x>2),g(x)=ax(a>1,x>2)

①若?x0∈(2,+∞),使f(x0)=m成立,則實(shí)數(shù)m的取值范圍為
 
;
②若?x1∈(2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)中“所有”一詞,叫做全稱量詞,用符號(hào)“?”表示;“存在”一詞,叫做存在量詞,用符號(hào)“?”表示.設(shè)f(x)=
x2-3x+82
  (x≥2) ,g(x)=ax (a>1)

(1)若?x0∈[2,+∞)使f(x0)=m成立,求實(shí)數(shù)m的取值范圍.
(2)若?x1∈[2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃州區(qū)模擬)在數(shù)學(xué)中“所有”一詞,叫做全稱量詞,用符號(hào)“?”表示;“存在”一詞,叫做存在量詞,用符號(hào)“?”表示.設(shè)f(x)=
x2-3x+3
x-2
(x>2)
,g(x)=ax(a>1,x>2).
①若?x0∈(2,+∞),使f(x0)=m成立,則實(shí)數(shù)m的取值范圍為
[3,+∞)
[3,+∞)
;
②若?x1∈(2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為
(1,
3
)
(1,
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)中“所有”一詞,叫做全稱量詞,用符號(hào)“?”表示;“存在”一詞,叫做存在量詞,用符號(hào)“?”表示.
設(shè)f(x)=
x2-3x+8
2
(x≥2),g(x)=ax(a>1,x≥2)

①?x0∈[2,+∞),使f(x0)=m成立,則實(shí)數(shù)m的取值范圍為
[3,+∞)
[3,+∞)

②若?x1∈[2,+∞),?x2∈[2,+∞)使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為
(1,
3
]
(1,
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省高二上學(xué)期第二次月考理科數(shù)學(xué)試卷 題型:填空題

在數(shù)學(xué)中“所有”一詞,叫全稱量詞,用符號(hào)“”表示;“存在”一詞,叫做存在量詞,用符號(hào)“”表示。設(shè)①若成立,則實(shí)數(shù)m取值范圍為_____________;②若則實(shí)數(shù)a的取值范圍為________。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案