已知定義在R上的二次函數(shù)f(x)=ax2-2bx+3
(1)如果a是集合{1,2,3,4}中的任一元素,b是集合{0,2,3}中的任一元素,試求函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增的概率,
(2)如果a是從區(qū)間[1,4]上任取一個數(shù),b是從區(qū)間[0,3]上任取一個數(shù),試求函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增的概率.
【答案】分析:(1)基本事件有(1,0),(1,2),(1,3),(2,0),(2,2),(2,3),(3,0),(3,2)(3,3),(4,0),(4,2),(4,3)共12個,滿足條件的基本事件有9個,由此能求出其概率.
(2)這是一個幾何概型,作出圖形,能求出其概率.
解答:解:(1)有題意知基本事件有(1,0),(1,2),(1,3),(2,0),(2,2),(2,3),(3,0),(3,2)(3,3),(4,0),(4,2),(4,3)共12個,
要使得方程在[1,+∞)上單調(diào)遞增,只需對稱軸x=,即a≥b,滿足條件的基本事件有9個,所以概率為=0.75.
(2)這是一個幾何概型,如圖,所以概率為
點評:本題考查概率和函數(shù)的綜合運用,第(1)題要注意古典概率的運算,第(2)題要注意幾何概型的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的二次函數(shù)f(x)=ax2-2bx+3
(1)如果a是集合{1,2,3,4}中的任一元素,b是集合{0,2,3}中的任一元素,試求函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增的概率,
(2)如果a是從區(qū)間[1,4]上任取一個數(shù),b是從區(qū)間[0,3]上任取一個數(shù),試求函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的二次函數(shù)R(x)=ax2+bx+c滿足2R(-x)-2R(x)=0,且R(x)的最小值為0,函數(shù)h(x)=lnx,又函數(shù)f(x)=h(x)-R(x).
(I)求f(x)的單調(diào)區(qū)間;  
(II)當a≤
1
2
時,若x0∈[1,3],求f(x0)的最小值;
(III)若二次函數(shù)R(x)圖象過(4,2)點,對于給定的函數(shù)f(x)圖象上的點A(x1,y1),當x1=
3
2
時,探求函數(shù)f(x)圖象上是否存在點B(x2,y2)(x2>2),使A、B連線平行于x軸,并說明理由.(參考數(shù)據(jù):e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的二次函數(shù)R(x)=ax2+bx(a>0)是偶函數(shù),函數(shù)f(x)=2lnx-R(x).
(I)求f(x)的單調(diào)區(qū)間;  
(II)當a≤1時,若x0∈[1,2],求f(x0)的最大值;
(III)若二次函數(shù)R(x)圖象過(1,1)點,對于給定的函數(shù)f(x)圖象上的點A(x1,y1),當x1=
1e
時,探求函數(shù)f(x)圖象上是否存在點B(x2,y2)(x2>1),使A、B連線平行于x軸,并說明理由.(參考數(shù)據(jù):e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三第二次質(zhì)檢理科數(shù)學(xué)復(fù)習(xí)卷(二) 題型:解答題

.已知定義在R上的二次函數(shù)滿足,且的最小值

為0,函數(shù),又函數(shù)。

(I)求的單調(diào)區(qū)間;  (II)當時,若,求的最小值;

(III)若二次函數(shù)圖象過(4,2)點,對于給定的函數(shù)圖象上的點A(),

時,探求函數(shù)圖象上是否存在點)(),使、連線平行于軸,并說明理由。(參考數(shù)據(jù):e=2.71828…)

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山東省日照市高三上學(xué)期測評理科數(shù)學(xué)試卷 題型:解答題

已知定義在R上的二次函數(shù)滿足,且的最小值為0,函數(shù),又函數(shù)。

(I)求的單調(diào)區(qū)間;

(II)當時,若,求的最小值;

(III)若二次函數(shù)圖象過(4,2)點,對于給定的函數(shù)圖象上的點A(),當時,探求函數(shù)圖象上是否存在點B()(),使A、B連線平行于x軸,并說明理由。

(參考數(shù)據(jù):e=2.71828…)

 

查看答案和解析>>

同步練習(xí)冊答案