下列“若p,則q”形式的命題中,那些命題中的q是p的必要條件?
(1)若b2=ac,則a、b、c成等比數(shù)列;
(2)若有且只有一個(gè)實(shí)數(shù)λ,是
a
b
,則
a
b

(3)若l∥α,則直線l與平面α所成的較大小為0°;
(4)若函數(shù)f(x)=ax(a>0且a≠1),則f(x)是單調(diào)增函數(shù).
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分必要條件的定義,分別進(jìn)行判斷即可.
解答: 解:(1)由b2=ac,不能推出a,b,c成等比數(shù)列,不是必要條件;
(2)若有且只有一個(gè)實(shí)數(shù)λ,使
a
b
,能推出
a
b
,是必要條件;
(3)由l∥α,能推出直線l與平面α所成的角的大小是0°,是必要條件;
(4)由函數(shù)f(x)=ax(a>0且a≠1),推不出f(x)是單調(diào)增函數(shù),本題必要條件.
點(diǎn)評(píng):本題考查了充分必要條件,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

半徑為5的圓過點(diǎn)A(-2,6)且以M(5,4)為中點(diǎn)的弦長為2
5
,則此圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin45°sin15°+cos15°cos45°=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:“0<a<
1
3
”是命題“一元二次方程ax2-2x+3=0有兩個(gè)同號(hào)且不等的實(shí)根”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果三個(gè)平面兩兩相交于三條直線,并且其中的兩條直線相交,那么第三條直線和這兩條直線有怎樣的位置關(guān)系?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)正數(shù)a,b,可按規(guī)律c=ab+a+b推廣為一個(gè)新數(shù)c,在a,b,c三個(gè)數(shù)種取連個(gè)較大的數(shù),按上述規(guī)則擴(kuò)充到一個(gè)新數(shù),依次下去,將每擴(kuò)充一次得到一個(gè)新數(shù)稱為一次操作.
(1)正數(shù)1,2經(jīng)過兩次擴(kuò)充后所得的數(shù)為
 

(2)若p>q>0,經(jīng)過五次操作后擴(kuò)充得到的數(shù)為(q+1)m(p+1)n-1(m,n為正整數(shù)),則m+n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn,Tn分別是等差數(shù)列{an},{bn}的前n項(xiàng)和,已知
Sn
Tn
=
7n+2
n+3
,則
a2+a20
b7+b15
等于( 。
A、
9
4
B、
37
8
C、
79
14
D、
149
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=2b=
3
,C=60°,則S△ABC=( 。
A、2
3
B、
3
2
C、
3
D、
3
3
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1中,E為AA1的中點(diǎn),F(xiàn)為BB1的中點(diǎn),與EF平行的長方體的面有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案