設(shè)數(shù)列的前項(xiàng)和為,且滿足.
(Ⅰ)求證:數(shù)列為等比數(shù)列;
(Ⅱ)求通項(xiàng)公式;
(Ⅲ)若數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前項(xiàng)和為.
(Ⅰ)見解析 (Ⅱ). (Ⅲ).
【解析】(I)根據(jù),可得,
從而可證明:為等比數(shù)列.
(II)在(I)的基礎(chǔ)上先求出的通項(xiàng)公式,然后再根據(jù)Sn求出an.
(III)先求出,
再根據(jù)an的通項(xiàng)公式求出bn,由于,所以易采用錯(cuò)位相減的方法求和
證明:(Ⅰ)因?yàn)?,所以 . 又,
所以 是首項(xiàng)為,公比為的等比數(shù)列.
(Ⅱ)由(Ⅰ)可得.當(dāng)時(shí),.
當(dāng)時(shí), .
故.
(Ⅲ)因?yàn)?數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,所以.所以 .
所以 .
所以 .
所以
.
所以 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年長沙一中一模文)(13分) 設(shè)數(shù)列的前項(xiàng)和為,且,其中為常數(shù)且.
(1)證明:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列的公比,數(shù)列滿足,(
求數(shù)列的通項(xiàng)公式;
(3)設(shè),,數(shù)列的前項(xiàng)和為,求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省佛山一中2010-2011學(xué)年高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本題滿分14分).設(shè)數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列的每兩項(xiàng)之間按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列:與兩項(xiàng)之間插入個(gè)數(shù),使這個(gè)數(shù)構(gòu)成等差數(shù)列,其公差為,求數(shù)列的前項(xiàng)和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年新疆烏魯木齊一中高三第一次月考文科數(shù)學(xué)試卷 題型:解答題
(本小題滿分12分)設(shè)數(shù)列的前項(xiàng)和為,且對于
任意的正整數(shù)都成立,其中為常數(shù),且
(1)求證:數(shù)列是等比數(shù)列(4分)
(2)設(shè)數(shù)列的公比,數(shù)列滿足:,)(,
,求證:數(shù)列是等差數(shù)列,并求數(shù)列的前項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com