【題目】學(xué)校對(duì)甲、乙兩個(gè)班級(jí)的同學(xué)進(jìn)行了體能測(cè)驗(yàn),成績(jī)統(tǒng)計(jì)如下(每班50人):
(1)成績(jī)不低于80分記為“優(yōu)秀”.請(qǐng)?zhí)顚?xiě)下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“成績(jī)優(yōu)秀”與所在教學(xué)班級(jí)有關(guān)?
(2)從兩個(gè)班級(jí)的成績(jī)?cè)?/span>的所有學(xué)生中任選2人,其中,甲班被選出的學(xué)生數(shù)記為,求的分布列與數(shù)學(xué)期望.
賦:.
【答案】(1)列聯(lián)表見(jiàn)解析,有的把握認(rèn)為:“成績(jī)優(yōu)秀”與所在教學(xué)班級(jí)有關(guān).
(2) 的分布列見(jiàn)解析,.
【解析】
(1)根據(jù)數(shù)據(jù)對(duì)應(yīng)填寫(xiě)表格,根據(jù)公式求卡方,對(duì)照參考數(shù)據(jù)確定把握率,(2)先確定隨機(jī)變量取法,再根據(jù)組合數(shù)求對(duì)應(yīng)概率,列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望.
(1)列聯(lián)表如下:
所以有的把握認(rèn)為:“成績(jī)優(yōu)秀”與所在教學(xué)班級(jí)有關(guān).
(2)由已知,甲、乙兩個(gè)班級(jí)成績(jī)?cè)?/span>的學(xué)生數(shù)分別為6人,8人
的取值為0,1,2
,,
的分布列:
的數(shù)學(xué)期望:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下表格記錄了甲、乙兩組各四名同學(xué)的植樹(shù)棵數(shù).乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中以表示.
甲組 | 9 | 9 | 11 | 11 |
乙組 | 8 | 9 | 10 |
(1)如果,求乙組同學(xué)植樹(shù)棵數(shù)的平均數(shù)和方差;
(2)如果,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹(shù)總棵數(shù)為19的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若函數(shù)為定義域上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)存在兩個(gè)極值點(diǎn), ,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把個(gè)相同的小球放到三個(gè)編號(hào)為的盒子中,且每個(gè)盒子內(nèi)的小球數(shù)要多于盒子的編號(hào)數(shù),則共有多少種放法( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,若對(duì)任意,都有,則稱(chēng)數(shù)列具有性質(zhì)P.
(1)若數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,試判斷數(shù)列是否具有性質(zhì)P;
(2)若正項(xiàng)等差數(shù)列具有性質(zhì)P,求數(shù)列的公差;
(3)已知正項(xiàng)數(shù)列具有性質(zhì)P,,且對(duì)任意,有,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足,則①數(shù)列單調(diào)遞增;②;③對(duì)于給定的實(shí)數(shù),若對(duì)任意的成立,必有.上述三個(gè)結(jié)論中正確個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.0個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為奇函數(shù),且相鄰兩對(duì)稱(chēng)軸間的距離為.
(1)求函數(shù)的最小正周期;
(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)保持不變),得到函數(shù)的圖象,求函數(shù)在區(qū)間的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左.右焦點(diǎn)為,離心率為.直線與軸,軸分別交于點(diǎn),是直線與橢圓的一個(gè)公共點(diǎn),是點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn),設(shè).
(1)證明:;
(2)若,的周長(zhǎng)為;寫(xiě)出橢圓的方程;
(3)確定的值,使得是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷(xiāo)售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)30元,未售出的產(chǎn)品,每盒虧損10元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了160盒該產(chǎn)品,以(單位:盒, )表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量, (單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷(xiāo)該產(chǎn)品的利潤(rùn).
(1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的平均數(shù);
(2)將表示為的函數(shù);
(3)根據(jù)直方圖估計(jì)利潤(rùn)不少于4000元的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com