已知△ABC中,A,B,C的對(duì)邊分別為a,b,c,且2cos2
B
2
=
3
sinB
,b=1.
(1)若A=
12
,求邊c的大。   
(2)求AC邊上高的最大值.
(1)1+cosB=
3
sinB
,
2sin(B-
π
6
)=1
,
sin(B-
π
6
)=
1
2

所以B-
π
6
=
π
6
6
(舍),
B=
π
3

A=
12
,則C=
π
4
,
c
sinc
=
b
sinB
,
c=
6
3

(2)設(shè)AC邊上的高為h,
S△ABC=
1
2
bh=
1
2
h
,
S△ABC=
1
2
acsinB=
3
4
ac

h=
3
2
ac

又b2=a2+c2-2accosB=a2+c2-ac≥ac,
∴ac≤1
h=
3
2
ac≤
3
2
,
當(dāng)a=c時(shí)取等號(hào)
所以AC邊上的高h(yuǎn)的最大值為
3
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB邊上的高所在的直線方程;
(2)直線l∥AB,與AC,BC依次交于E,F(xiàn),S△CEF:S△ABC=1:4.求l所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,a=2,b=1,C=60°,則邊長(zhǎng)c=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
n
=(cos
A
2
,sin
A
2
)
滿足
m
n
=
1
2
.(1)若△ABC的面積S=
3
,求b+c的值.(2)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A,B,C的對(duì)邊分別為a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判斷△ABC的形狀,并求t=sinA+sinB的取值范圍;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,對(duì)任意的滿足題意的a,b,c都成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案