精英家教網 > 高中數學 > 題目詳情
設n為正整數,規(guī)定:,已知
(1)解不等式:f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)探求;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含有8個元素.
【答案】分析:(1)因為是分段函數,所以先根據定義域選擇解析式來構造不等式,當0≤x≤1時,由2(1-x)≤x求解;當1<x≤2時,由x-1≤x求解,取后兩個結果取并集.
(2)先求得f(0),f(1),f(2),再分別求得f(f(0)),f(f(f(0)));f(f(1)),f(f(f(1)));f(f(f(2))).再觀察與自變量是否相等即可.
(3)看問題有2008重求值,一定用到周期性,所以先求出 ,,,觀察是以4為周期,有 (k,r∈N)求解
(4)由(1)可得∈B、由(2)可得0、1、2∈B、由(3)可得、∈B,進而可證得結論.
解答:解:(1)①當0≤x≤1時,由2(1-x)≤x得,x≥
≤x≤1.
②當1<x≤2時,因x-1≤x恒成立.
∴1<x≤2.
由①,②得,f(x)≤x的解集為{x|≤x≤2}.
(2)∵f(0)=2,f(1)=0,f(2)=1,
∴當x=0時,f3(0)=f(f(f(0)))=f(-f(2))=f(1)=0;
當x=1時,f3(1)=f(f(f(1)))=f(f(0))=f(2)=1;
當x=2時,f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.
即對任意x∈A,恒有f3(x)=x.
(3),

,
,
一般地,(k,r∈N).

(4)由(1)知,f()=,∴fn)=,則f12)=,∴∈B.
由(2)知,對x=0、1、2,恒有f3(x)=x,∴f12(x)=x,則0、1、2∈B.
由(3)知,對x=、、,恒有f12(x)=x,∴、、、∈B.
綜上所述、0、1、2、、、、∈B.
∴B中至少含有8個元素.
點評:本題考查的知識點是分段函數及分段不等式的解法,元素與集合關系的判定,函數的周期性,函數恒成立問題,分段函數問題要注意分類討論,還考查了分段函數多重求值,要注意從內到外,根據自變量取值選擇好解析式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設n為正整數,規(guī)定:fn(x)=
f{f[…f(x)…]}
n個f
,已知f(x)=
2(1-x)(0≤x≤1)
x-1(1<x≤2)

(1)解不等式:f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)求f2008(
8
9
)
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•惠州模擬)設n為正整數,規(guī)定:fn(x)=
f{f[…f(x)]}
n個f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2
,
(1)解不等式f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含8個元素.

查看答案和解析>>

科目:高中數學 來源: 題型:

設n為正整數,規(guī)定:fn(x)=
f{f[…f(x)…]}
n個f
,已知f(x)=
2(1-x)
x-1
,
(0≤x≤1)
(1<x≤2)

(1)解不等式:f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)探求f2009(
8
9
)

(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含有8個元素.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

  設n為正整數,規(guī)定:fn(x)=,已知f(x)= .

(1)解不等式f(x)≤x;

(2)設集合A={0,1,2},對任意xA,證明f3(x)=x;

(3)求f2007()的值;

(4)(理)若集合B=,證明B中至少包含8個元素.

查看答案和解析>>

同步練習冊答案